Hard problems in Knot Theory

Arnaud de Mesmay (CNRS, GIPSA-lab)

Joint work with Yo'av Rieck, Eric Sedgwick and Martin Tancer.

Knot Theory

Knots

- A knot is a nice map $K: S^{1} \rightarrow \mathbb{R}^{3}$.
- Two knots are equivalent if they are ambient isotopic, i.e., if there exists a continuous deformation from one into the other without crossings.
- It is not obvious that there exist non-equivalent knots.

Knot diagrams

Diagrams

- A knot diagram is a 2D-projection of a knot where at every vertex, one indicates which strand goes above and below.

Theorem (Reidemeister)

Two knot diagrams correspond to equivalent knots if and only if they can be related by a sequence of Reidemeister moves.

Links

Links

- A link is a disjoint union of knots.
- Two links are equivalent if they are ambient isotopic.

Links

Links

- A link is a disjoint union of knots.
- Two links are equivalent if they are ambient isotopic.
- It is easy to prove that there exists non equivalent links by using the linking number...
- ... but it does not work all the time

$$
\xrightarrow[\mid]{\uparrow+} \leftarrow \uparrow+\quad \stackrel{\uparrow}{\longrightarrow} \quad \stackrel{\uparrow-}{\square}
$$

Computational problems in knot theory I

Unknot recognition

Input: A piecewise-linear closed curve K in \mathbb{R}^{3} made of n segments.
Output: Is K equivalent to the trivial knot?

- Already not obvious that this is decidable [Haken '61].
- In NP \cap co - NP [Hass-Lagarias-Pippenger '99], [Agol'02 \rightarrow Lackenby '18].
- "Easy" NP algorithm: guess a sequence of Reidemeister moves. $O\left(n^{11}\right)$ moves are enough [Lackenby'15].

- Lower bounds: ??

Computational problems in knot theory II

Knot equivalence

Input: Two closed curves K_{1} and K_{2} in \mathbb{R}^{3} made of n_{1} and n_{2} segments.
Output: Is K_{1} equivalent to K_{2} ?

- Even harder to prove that it is decidable [Hemion '79, Matveev '07].
- Best known algorithm [Lackenby-Coward '14], via Reidemeister moves:

- Lower bounds: ???

Computational problems in knot theory III

Unknotting number

Input: A closed curve K in \mathbb{R}^{3} made of n segments and an integer k.
Output: Can I make k crossing changes to K to transform it into a trivial knot?

- Crossing changes are allowed in any diagram of K.
- Not known to be decidable.
- No known lower bound.
- Same for the Unlinking number: turning a link into a trivial link.

Our results

Finding the best way to untangle a knot is hard:

Theorem

Deciding whether there is a sequence of at most k Reidemeister moves transforming a knot diagram into the unknot is NP-hard.

Finding the best way to cut a link to untangle it is hard:

Theorem

Computing the unlinking number of a link is NP-hard.
Finding an untangled sublink is hard:

Theorem

Determining if a link admits a trivial sublink with n components is NP-hard.

- We also get hardness for a host of 4-dimensional invariants.
- Similar simultaneous results/conjecture in [Koenig,Tsvletkova'18].
- Only two (!) hard problems known for knots.

Trivial sublink

Input: A link L made of n segments, an integer k. Output: Does L contain a trivial sublink with k components?

Trivial sublink
Input: A link L made of n segments, an integer k.
Output: Does L contain a trivial sublink with k components?

$$
\phi=(t \vee x \vee y) \wedge(\neg x \vee y \vee z)
$$

Trivial sublink
Input: A link L made of n segments, an integer k.
Output: Does L contain a trivial sublink with k components?

$$
\phi=(t \vee x \vee y) \wedge(\neg x \vee y \vee z)
$$

Trivial sublink
First direction: Remove the components assigned as true.
The rest is unlinked!

$$
\phi=(t \vee x \vee y) \wedge(\neg x \vee y \vee z)
$$

Trivial sublink

First direction: Remove the components assigned as true.
The rest is unlinked!

$$
\phi=(t \vee x \vee y) \wedge(\neg x \vee y \vee z)
$$

Trivial sublink

Second direction: For each variable, at least one literal has been removed. For each clause, at least one literal has been removed.

$$
\phi=(t \vee x \vee y) \wedge(\neg x \vee y \vee z)
$$

Trivial sublink

Second direction: For each variable, at least one literal has been removed. For each clause, at least one literal has been removed.

$$
\phi=(t \vee x \vee y) \wedge(\neg x \vee y \vee z)
$$

Unlinking number

Replace each knot by its Whitehead double.

Unlinking number

$$
\phi=(t \vee x \vee y) \wedge(\neg x \vee y \vee z)
$$

Replace each knot by its Whitehead double.

Unlinking number

$$
\phi=(t \vee x \vee y) \wedge(\neg x \vee y \vee z)
$$

If Φ is satisfiable, uncross the true literals (n crossing changes).

Unlinking number

$$
\phi=(t \vee x \vee y) \wedge(\neg x \vee y \vee z)
$$

We get a trivial link.

Unlinking number

$$
\phi=(t \vee x \vee y) \wedge(\neg x \vee y \vee z)
$$

Unlinkable in n changes \rightarrow each variable gets a crossing change.

Unlinking number

$$
\phi=(t \vee x \vee y) \wedge(\neg x \vee y \vee z)
$$

This crossing change hits x or $\neg x$ but not both.

Unlinking number

$$
\phi=(t \vee x \vee y) \wedge(\neg x \vee y \vee z)
$$

We call the corresponding literal TRUE.

Unlinking number

$$
\phi=(t \vee x \vee y) \wedge(\neg x \vee y \vee z)
$$

Each clause (Borromean rings) sees at least one crossing change $\rightarrow \Phi$ satisfiable.

Parenthesis on crossing changes

- Embedding into \mathbb{R}^{3} or \mathbb{S}^{3} is equivalent.
- \mathbb{S}^{3} is the boundary of \mathbb{B}^{4}.
- The unlinking/unknotting number is related to the genus of surfaces in \mathbb{B}^{4} having the knot as a boundary.
- Making a crossing change amounts to adding a handle to the surface.

\Rightarrow Hardness of a handful of 4-dimensional invariants.

Reidemeister moves I

Reidemeister moves I

Replace each knot with a twisted trivial knot.

Reidemeister moves I

$$
\phi=(t \vee x \vee y) \wedge(\neg x \vee y \vee z)
$$

We get the diagram of a trivial link.

Reidemeister moves I

Untwist the ends of TRUE components ($2 n$ Reidemeister I).

Reidemeister moves I

$$
\phi=(t \vee x \vee y) \wedge(\neg x \vee y \vee z)
$$

The rest unravels with Reidemeister II.

Reidemeister moves I

$$
\phi=(t \vee x \vee y) \wedge(\neg x \vee y \vee z)
$$

In the other direction, look separately at variables...

Reidemeister moves I

$$
\phi=(t \vee x \vee y) \wedge(\neg x \vee y \vee z)
$$

and clauses.

Reidemeister moves II

With (a lot of) additional work, we can deal with the case of a single knot.

$$
\Phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(x_{1} \vee \neg x_{3} \vee \neg x_{4}\right)
$$

Our original motivation: Embed ${ }_{2 \rightarrow 3}$ and Embed $3 \rightarrow 3$

This 3-manifold embeds into \mathbb{S}^{3} if and only if Φ is satisfiable.
\rightarrow Deciding whether a 3 or a 2-dimensional space embeds into \mathbb{R}^{3} is NP-hard.
Best algorithm runs in a tower of exponentials [Matoušek, Sedgwick, Tancer, Wagner '16].

Perspectives

- Unknotting number?
- Knot equivalence?
- Crossing number (= smallest number of crossings in a diagram)? The best known algorithm is the naive one.

Perspectives

- Unknotting number?
- Knot equivalence?
- Crossing number (= smallest number of crossings in a diagram)? The best known algorithm is the naive one.

Thank you! Questions?

