
Hard problems in Knot Theory

Arnaud de Mesmay (CNRS, GIPSA-lab)

Joint work with Yo’av Rieck, Eric Sedgwick and Martin Tancer.
1 / 36



Knot Theory

Knots
A knot is a nice map K : S1 → R3.
Two knots are equivalent if they are ambient isotopic , i.e., if there
exists a continuous deformation from one into the other without
crossings.
It is not obvious that there exist non-equivalent knots.
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Knot diagrams

Diagrams
A knot diagram is a 2D-projection of a knot where at every vertex,
one indicates which strand goes above and below.

Theorem (Reidemeister)
Two knot diagrams correspond to equivalent knots if and only if they can
be related by a sequence of Reidemeister moves.
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Links

Links
A link is a disjoint union of knots.
Two links are equivalent if they are ambient isotopic.

It is easy to prove that there exists non equivalent links by using the
linking number ...
... but it does not work all the time
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Computational problems in knot theory I

Unknot recognition
Input: A piecewise-linear closed curve K in R3 made of n segments.
Output: Is K equivalent to the trivial knot?

=
?

Already not obvious that this is decidable [Haken ’61].
In NP ∩ co −NP [Hass-Lagarias-Pippenger ’99], [Agol’02 → Lackenby ’18].
“Easy” NP algorithm: guess a sequence of Reidemeister moves.
O(n11) moves are enough [Lackenby’15].

Lower bounds: ?? 6 / 36



Computational problems in knot theory II

Knot equivalence
Input: Two closed curves K1 and K2 in R3 made of n1 and n2 segments.
Output: Is K1 equivalent to K2?

=
?

Even harder to prove that it is decidable [Hemion ’79, Matveev ’07].
Best known algorithm [Lackenby-Coward ’14], via Reidemeister moves:

22.
..
2n1+n2

 height cn1+n2 where c = 101000000.
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Computational problems in knot theory III

Unknotting number
Input: A closed curve K in R3 made of n segments and an integer k .
Output: Can I make k crossing changes to K to transform it into a trivial
knot?

Crossing changes are allowed in any diagram of K .
Not known to be decidable.
No known lower bound.
Same for the Unlinking number : turning a link into a trivial link.

8 / 36



Our results

Finding the best way to untangle a knot is hard:

Theorem
Deciding whether there is a sequence of at most k Reidemeister moves
transforming a knot diagram into the unknot is NP-hard.

Finding the best way to cut a link to untangle it is hard:

Theorem
Computing the unlinking number of a link is NP-hard.

Finding an untangled sublink is hard:

Theorem
Determining if a link admits a trivial sublink with n components is NP-hard.

We also get hardness for a host of 4-dimensional invariants.
Similar simultaneous results/conjecture in [Koenig,Tsvletkova’18].
Only two (!) hard problems known for knots.
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Trivial sublink

Input: A link L made of n segments, an integer k .
Output: Does L contain a trivial sublink with k components?
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Trivial sublink

Input: A link L made of n segments, an integer k .
Output: Does L contain a trivial sublink with k components?

φ = (t ∨ x ∨ y) ∧ (¬x ∨ y ∨ z)
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Trivial sublink

First direction: Remove the components assigned as true.
The rest is unlinked!

φ = (t ∨ x ∨ y) ∧ (¬x ∨ y ∨ z)
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Trivial sublink

Second direction: For each variable, at least one literal has been removed.
For each clause, at least one literal has been removed.

φ = (t ∨ x ∨ y) ∧ (¬x ∨ y ∨ z)
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Unlinking number

φ = (t ∨ x ∨ y) ∧ (¬x ∨ y ∨ z)

Replace each knot by its Whitehead double.

Each clause (Borromean rings) sees at least one crossing change → Φ
satisfiable.
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Unlinking number

φ = (t ∨ x ∨ y) ∧ (¬x ∨ y ∨ z)

If Φ is satisfiable, uncross the true literals (n crossing changes).

Each clause (Borromean rings) sees at least one crossing change → Φ
satisfiable.
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Unlinking number

φ = (t ∨ x ∨ y) ∧ (¬x ∨ y ∨ z)

We get a trivial link.

Each clause (Borromean rings) sees at least one crossing change → Φ
satisfiable.
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Unlinking number

φ = (t ∨ x ∨ y) ∧ (¬x ∨ y ∨ z)

Unlinkable in n changes → each variable gets a crossing change.

Each clause (Borromean rings) sees at least one crossing change → Φ
satisfiable.
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Unlinking number

φ = (t ∨ x ∨ y) ∧ (¬x ∨ y ∨ z)

This crossing change hits x or ¬x but not both.

Each clause (Borromean rings) sees at least one crossing change → Φ
satisfiable.
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Unlinking number

φ = (t ∨ x ∨ y) ∧ (¬x ∨ y ∨ z)

We call the corresponding literal TRUE.

Each clause (Borromean rings) sees at least one crossing change → Φ
satisfiable.
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Unlinking number

φ = (t ∨ x ∨ y) ∧ (¬x ∨ y ∨ z)

Each clause (Borromean rings) sees at least one crossing change → Φ
satisfiable. 24 / 36



Parenthesis on crossing changes

Embedding into R3 or S3 is equivalent.
S3 is the boundary of B4.
The unlinking/unknotting number is related to the genus of surfaces
in B4 having the knot as a boundary.
Making a crossing change amounts to adding a handle to the surface.

⇒ Hardness of a handful of 4-dimensional invariants.
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Reidemeister moves I

φ = (t ∨ x ∨ y) ∧ (¬x ∨ y ∨ z)
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Reidemeister moves I

φ = (t ∨ x ∨ y) ∧ (¬x ∨ y ∨ z)

Replace each knot with a twisted trivial knot.
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Reidemeister moves I

φ = (t ∨ x ∨ y) ∧ (¬x ∨ y ∨ z)

We get the diagram of a trivial link.
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Reidemeister moves I

φ = (t ∨ x ∨ y) ∧ (¬x ∨ y ∨ z)

Untwist the ends of TRUE components (2n Reidemeister I).
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Reidemeister moves I

φ = (t ∨ x ∨ y) ∧ (¬x ∨ y ∨ z)

The rest unravels with Reidemeister II.
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Reidemeister moves I

φ = (t ∨ x ∨ y) ∧ (¬x ∨ y ∨ z)

In the other direction, look separately at variables...
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Reidemeister moves I

φ = (t ∨ x ∨ y) ∧ (¬x ∨ y ∨ z)

... and clauses.
32 / 36



Reidemeister moves II

With (a lot of) additional work, we can deal with the case of a single knot.

Φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x4) ∧ (x1 ∨ ¬x3 ∨ ¬x4)

x1

x2 x3
x4

¬x1
¬x2

¬x3
¬x4
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Our original motivation: Embed2→3 and Embed3→3

This 3-manifold embeds into S3 if and only if Φ is satisfiable.
→ Deciding whether a 3 or a 2-dimensional space embeds into R3 is
NP-hard.
Best algorithm runs in a tower of exponentials [Matoušek, Sedgwick, Tancer,
Wagner ’16].
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Perspectives

Unknotting number?
Knot equivalence?
Crossing number (= smallest number of crossings in a diagram)? The
best known algorithm is the naive one.

Thank you! Questions?
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