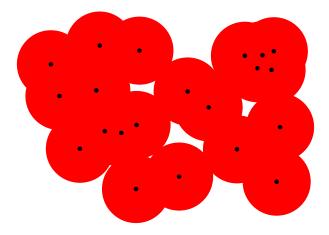
Approximating *k*-fold filtrations using weighted Delaunay triangulations

Mickaël Buchet and Michael Kerber

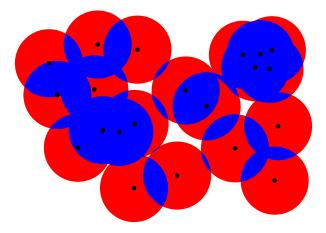
TU Graz

April 4, 2019

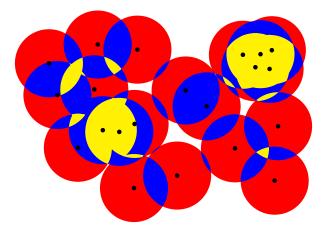
k-cover



k-cover



k-cover



• Classical persistence: Fix k and let the radius of balls increase.

- Classical persistence: Fix k and let the radius of balls increase.
- Persistence in depth: Fix the radius and let k decrease.

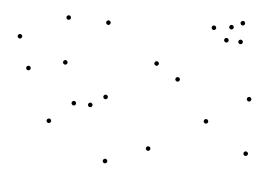
- Classical persistence: Fix k and let the radius of balls increase.
- Persistence in depth: Fix the radius and let k decrease.

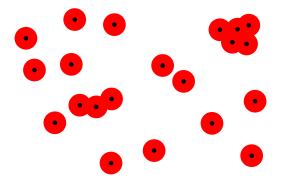
Algorithmic solutions using rhomboic tiling proposed by Edelsbrunner and Osang that are not trivial.

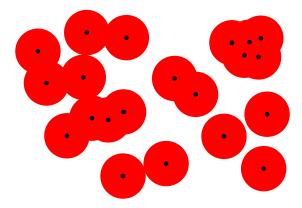
- Classical persistence: Fix k and let the radius of balls increase.
- Persistence in depth: Fix the radius and let k decrease.

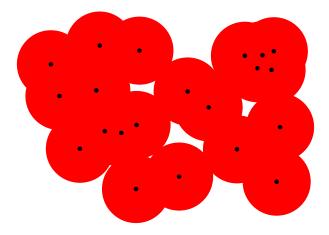
Algorithmic solutions using rhomboic tiling proposed by Edelsbrunner and Osang that are not trivial.

Can we approximate the result using union of balls?









- Čech complex.
- Alpha complex.

- Čech complex.
- Alpha complex.

Restricting the growth of balls to the cells of the Voronoi diagram.

- Čech complex.
- Alpha complex.

Restricting the growth of balls to the cells of the Voronoi diagram.

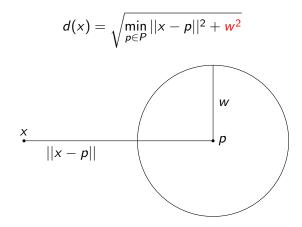
Filtration on the Delaunay triangulation

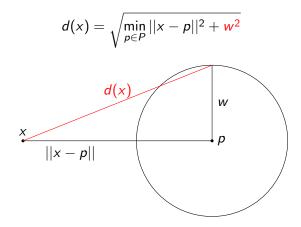
$$d(x) = \min_{p \in P} ||x - p||$$

$$d(x) = \sqrt{\min_{p \in P} ||x - p||^2 + 0}$$

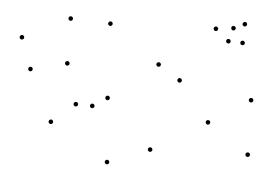
$$d(x) = \sqrt{\min_{p \in P} ||x - p||^2 + w^2}$$

$$d(x) = \sqrt{\min_{p \in P} ||x - p||^2 + w^2}$$

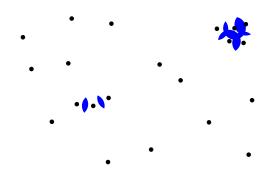


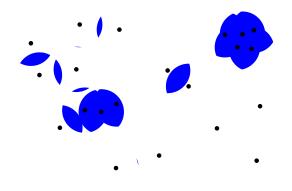


Now for k = 2

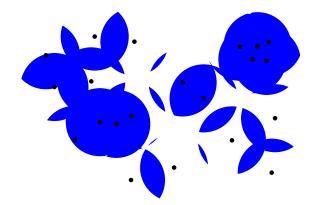


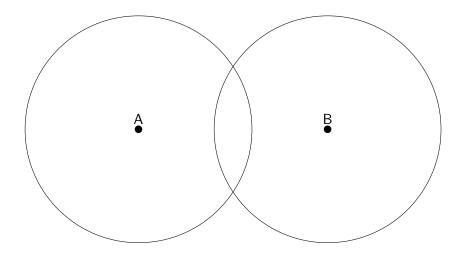
Now for k = 2

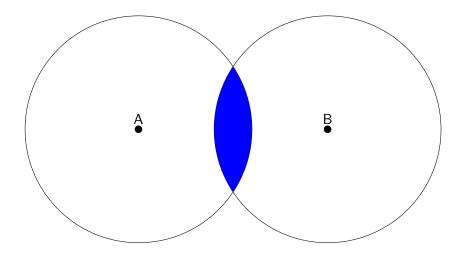


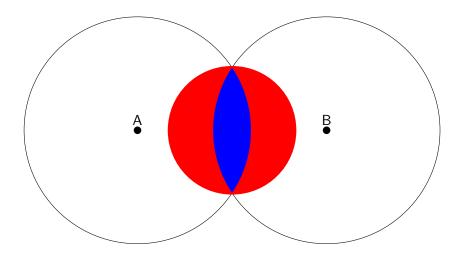


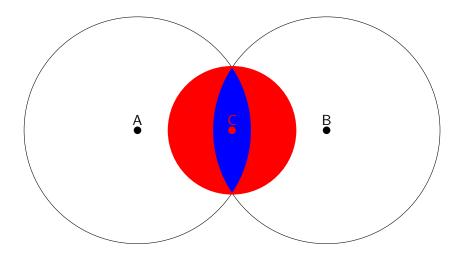
Now for k = 2











Using previous work: distance to measure (k-distance).

Using previous work: distance to measure (*k*-distance).

Take the middle point C = A + B and consider the power distance:

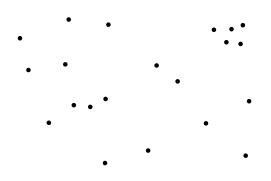
$$f(x) = \sqrt{||C - x||^2 + \frac{||A - B||^2}{4}}$$

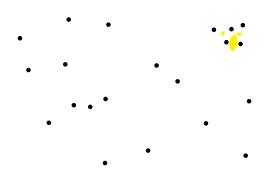
Using previous work: distance to measure (*k*-distance).

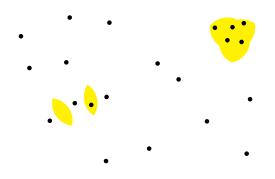
Take the middle point C = A + B and consider the power distance:

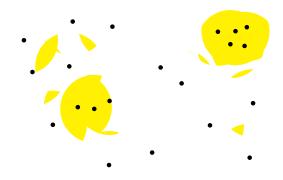
$$f(x) = \min_{A,B} \sqrt{||C - x||^2 + \frac{||A - B||^2}{4}}$$

Manicheism is too simple







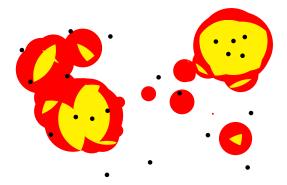


• Considering every set of k-points x_1, \ldots, x_k we build the barycentre b and compute the weight $w^2 = \frac{1}{k} \sum ||b - x_i||^2$.

- Considering every set of k-points x_1, \ldots, x_k we build the barycentre b and compute the weight $w^2 = \frac{1}{k} \sum ||b x_i||^2$.
- Then we look at the sublevel sets of the power distance:

$$f(x) = \min_{x_1, \dots, x_k} \sqrt{||x - b||^2 + w^2}$$

Barycentric over-approximation



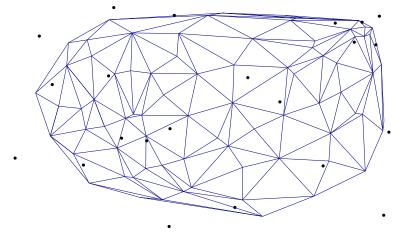
• Taking the nerve of the union, we have a filtered simplicial complex.

- Taking the nerve of the union, we have a filtered simplicial complex.
- We have a large number of balls but we can restrict to the cells of the *k*-order Voronoi diagram.

- Taking the nerve of the union, we have a filtered simplicial complex.
- We have a large number of balls but we can restrict to the cells of the *k*-order Voronoi diagram.

• The result is a weighted Delaunay triangulation.

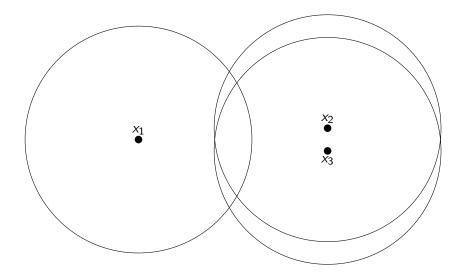
Resulting triangulation

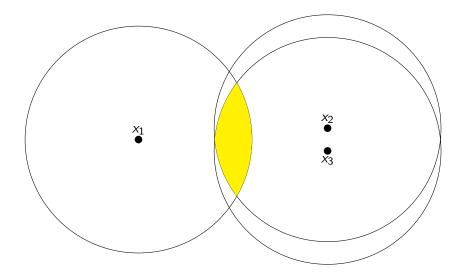


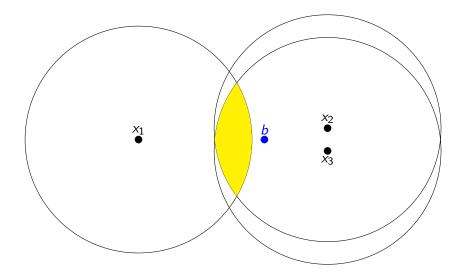
Barycentric guarantees

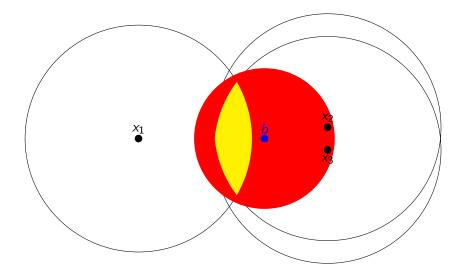
Theorem

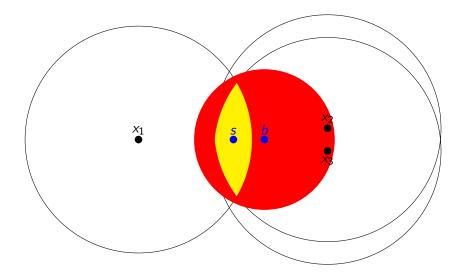
$$\forall k \geq 2, \ \forall lpha > 0, \ \mathcal{K}_{lpha}^{(k)} \subset \mathcal{A}_{lpha} \subset \mathcal{K}_{\sqrt{klpha}}^{(k)}$$











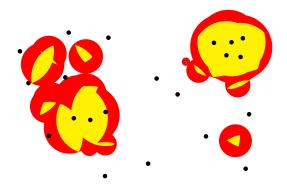
• Replace barycenters by by the center of the minimum enclosing ball.

- Replace barycenters by by the center of the minimum enclosing ball.
- Replace the weight by the radius *R* of the minimum enclosing ball.

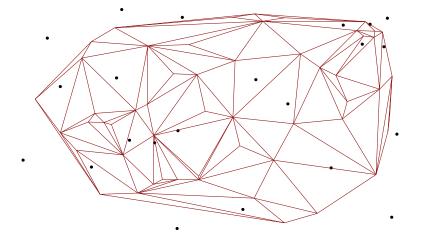
- Replace barycenters by by the center of the minimum enclosing ball.
- Replace the weight by the radius *R* of the minimum enclosing ball.

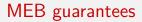
$$f(x) = \min_{T = x_1, \dots, x_k} \sqrt{||x - s_T||^2 + R_T^2}$$

Minimum enclosing balls covering



MEB triangulation





Theorem

$$\forall k \geq 2, \ \forall \alpha > 0, \ \mathcal{K}_{\alpha}^{(k)} \subset \mathcal{E}_{\alpha} \subset \mathcal{K}_{\sqrt{2}\alpha}^{(k)}$$

Conjecture

Every non-empty cell in the MEB-diagram is also a non-empty cell in the k-order Voronoi diagram.

Conjecture

Every non-empty cell in the MEB-diagram is also a non-empty cell in the k-order Voronoi diagram.

Conjecture

Every simplex of the MEB-triangulation is also a simplex of the *k*-order Delaunay triangulation.

Summary (1)

• It is possible to approximate the *k*-fold filtration within a constant approximation factor using a wieghted Delaunay triangulation.

Summary (1)

- It is possible to approximate the *k*-fold filtration within a constant approximation factor using a wieghted Delaunay triangulation.
- We need to use a triangulation based on minimum enclosing balls rather than barycentres.

Summary (1)

- It is possible to approximate the *k*-fold filtration within a constant approximation factor using a wieghted Delaunay triangulation.
- We need to use a triangulation based on minimum enclosing balls rather than barycentres.
- This triangulation seems smaller than the *k*-order Delaunay triangulation.

Summary (2)

