3D-Delaunay on points on surfaces (A Poisson sample of a smooth surface is a good sample)
Charles Duménil and Olivier Devillers

## JGA 2019

Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

## Motivation: Delaunay triangulation

Actual objective:
Computing the expected size of the Delaunay triangulation of a Poisson point process distributed on a surface.


## Delaunay triangulation


$\sharp(\operatorname{Del}(X))$ : number of edges.

## Delaunay triangulation


$\sharp(\operatorname{Del}(X))$ : number of edges.

## State of the art

In 2D, the Delaunay triangulation has a linear number of edges like every planar graph.

In the 3D space, the size ranges:
from linear:

to quadratic:

(Other example when the points are on the curve $\left(t, t^{2}, t^{3}\right)$ )

## State of art, on a surface $S$ :

Good sample ( $(\varepsilon, \kappa)$-sample):

- at least one point in any disk of radius $\varepsilon$,
- at most $\kappa$ points in any disk of radius $\varepsilon$.

| Size(Del(X)) | Cylinder | Generic surface |
| :---: | :---: | :---: |
| Good sample | $O(n \sqrt{n})^{[1]}$ | $O(n \log n)^{[2]}$ |
| Random Sample | $\Theta(n \log n)^{[3]}$ | $?$ |

[1] Erickson
[2] Attali, Boissonnat, Lieutier
[3] Devillers, Erickson, Goaoc


## On a surface, is a Poisson sample a good sample?



What is the probability that there exists:

- an empty disk of radius $\varepsilon$ ? (large enough to contain points)
- a disk of radius $\varepsilon$ that contains more than $\kappa$ points?
(large enough not to be exceeded)


## Sketch of the proof: $\mathbb{P}[\exists$ empty $\varepsilon$-disk $]$

$\alpha$-maximal set: Maximal set of disjoint $\alpha$-disks. $\sharp(\alpha$-maximal set $)=O\left(\frac{1}{\alpha^{2}}\right)$.


$$
\begin{aligned}
\mathbb{P}[\exists \text { empty } \varepsilon \text {-disk }] & \leq \sum_{D_{i} \in \frac{\varepsilon}{3} \text {-maximal set }} \mathbb{P}\left[\exists \text { empty } D_{i}\right] \\
& =O\left(\frac{1}{\varepsilon^{2}}\right) e^{-\lambda \operatorname{Area}\left(\frac{\varepsilon}{3}-\text { disk }\right)} .
\end{aligned}
$$

## Sketch of the proof: $\mathbb{P}[\exists$ empty $\varepsilon$-disk $]$

$\alpha$-maximal set: Maximal set of disjoint $\alpha$-disks. $\sharp(\alpha$-maximal set $)=O\left(\frac{1}{\alpha^{2}}\right)$.


$$
\begin{aligned}
\mathbb{P}[\exists \text { empty } \varepsilon \text {-disk }] & \leq \sum_{D_{i} \in \frac{\varepsilon}{3} \text {-maximal set }} \mathbb{P}\left[\exists \text { empty } D_{i}\right] \\
& =O\left(\frac{1}{\varepsilon^{2}}\right) e^{-\lambda \operatorname{Area}\left(\frac{\varepsilon}{3}-\text { disk }\right)} .
\end{aligned}
$$

$$
\text { for } \varepsilon=3 \sqrt{\frac{\log \lambda}{\lambda}} \quad=O\left(\lambda^{-1}\right)
$$

## State of art, on a surface $S$ :

Good sample ( $(\varepsilon, \kappa)$-sample):

- at least one point in any disk of radius $\varepsilon$,
- at most $\kappa$ points in any disk of radius $\varepsilon$.

| Size $($ Del $(\mathrm{X}))$ | Cylinder | Generic surface |
| :---: | :---: | :---: |
| Good sample | $O(n \sqrt{n})^{[1]}$ | $O(n \log n)^{[2]}$ |
| Random sample | $\Theta(n \log n)^{[3]}$ | $?$ |



## Sketch of the proof: $\sharp(\operatorname{Del}(X))=\mathcal{O}\left(\lambda \log ^{2} \lambda\right)$

- Good sample: $O\left(\lambda \log ^{2} \lambda\right)$,
- Bad sample: $O\left(\lambda^{2}\right)$.
$\mathbb{E}[\sharp(\operatorname{Del}(X))]=\mathbb{E}[\sharp(\operatorname{Del}(X)) \mid X$ good sample $] \mathbb{P}[X$ good sample $]$
$+\mathbb{E}[\sharp(\operatorname{Del}(X)) \mid X$ not good sample $] \mathbb{P}[X$ not good sample $]$


## Sketch of the proof: $\sharp(\operatorname{De}(X))=\mathcal{O}\left(\lambda \log ^{2} \lambda\right)$

- Good sample: $O\left(\lambda \log ^{2} \lambda\right)$,
- Bad sample: $O\left(\lambda^{2}\right)$.
$\mathbb{E}[\sharp(\operatorname{Del}(X))]=\mathbb{E}[\sharp(\operatorname{Del}(X)) \mid X$ good sample $] \mathbb{P}[X$ good sample $]$

$$
\begin{array}{cc}
=O\left(\lambda \log ^{2} \lambda\right) & \leq 1 \\
+\mathbb{E}[\sharp(\text { Del }(X)) \mid X \text { not good sample }] \mathbb{P}[X \text { not good sample }] \\
=O\left(\lambda^{2}\right) & =O\left(\lambda^{-1}\right)
\end{array}
$$

## Sketch of the proof: $\sharp(\operatorname{De}(X))=\mathcal{O}\left(\lambda \log ^{2} \lambda\right)$

- Good sample: $O\left(\lambda \log ^{2} \lambda\right)$,
- Bad sample: $O\left(\lambda^{2}\right)$.
$\mathbb{E}[\sharp(\operatorname{Del}(X))]=\mathbb{E}[\sharp(\operatorname{Del}(X)) \mid X$ good sample $] \mathbb{P}[X$ good sample $]$

$$
\begin{aligned}
=O\left(\lambda \log ^{2} \lambda\right) & \leq 1 \\
+\mathbb{E}[\sharp(\text { Del }(X)) \mid X \text { not good sample }] \mathbb{P}[ & X \text { not good sample }] \\
=O\left(\lambda^{2}\right) & =O\left(\lambda^{-1}\right) \\
\leq O\left(\lambda \log ^{2} \lambda\right) \times 1+O\left(\lambda^{2}\right) \times O\left(\lambda^{-1}\right) & =O\left(\lambda \log ^{2} \lambda\right) .
\end{aligned}
$$

## Current works: Computing directly with Poisson process



What is the probability that there exists:

- an empty disk of radius $\varepsilon$ ? (large enough to contain points)
- a disk of radius $\varepsilon$ that contains more than $\kappa$ points?
(large enough not to be exceeded)


## Expected size in the plane (Halfmoon graph)



Delaunay $\subset$ HM-graph

$$
\operatorname{deg}(O)=\sum_{P \in X} \mathbb{1}_{[O P \in \text { Delaunay }]}
$$

## Expected size in the plane (Halfmoon graph)



Delaunay $\subset$ HM-graph

$$
\operatorname{deg}(O) \leq \sum_{P \in X} \mathbb{1}_{[O P \in \mathrm{HM} \text {-graph }]}
$$

## Expected size in the plane (Halfmoon graph)



Delaunay $\subset$ HM-graph

$$
\begin{aligned}
\operatorname{deg}(O) & \leq \sum_{P \in X} \mathbb{1}_{[O P \in \mathrm{HM} \text {-graph }]} \\
\mathbb{E}[\operatorname{deg}(O)] & \leq \sum_{P \in X} \mathbb{P}[O P \in \mathrm{HM} \text {-graph }]
\end{aligned}
$$

## Expected size in the plane (Halfmoon graph)



Delaunay $\subset$ HM-graph

$$
\operatorname{deg}(O) \leq \sum_{P \in X} \mathbb{1}_{[O P \in \mathrm{HM} \text {-graph }]}
$$

$$
\begin{aligned}
\mathbb{E}[\operatorname{deg}(O)] & \leq \sum_{P \in X} \mathbb{P}[O P \in \text { HM-graph }] \\
& \leq 2 \int_{\mathbb{R}^{2}} \exp \left(-\frac{\lambda}{2}\left(\frac{\pi\left(x^{2}+y^{2}\right)}{4}\right)\right) \lambda d x d y=16
\end{aligned}
$$

## On the cylinder


$\left.\mathbb{E}[\operatorname{deg}(O)]=O\left(\int_{C_{y l}} \exp \left(-\lambda \frac{x y}{2}\right)\right) \lambda d x d y\right)=O(\ln (\lambda))$

## On a surface $S$



Empty-region graph: Axis aligned ellipse

Expected degree: $O(f($ Aspect ratio $))$

## Generic surface (Almost proved)



Almost everywhere: $\mathbb{E}[\mathrm{deg}]=O(1)$
At a red point: $\mathbb{E}[d e g]=O(\ln n)$

## Thanks for your attention

