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Motivation: Measuring Similarity Between Curves

How can we tell when two cycles or curves are similar to each
other?
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Applications

Similarity measures have many potential applications:

Analyzing GIS data

Map analysis and simplification

Handwriting recognition

Computing “good” morphings between curves

Surface parameterizations

There are many different ways to check similarity. Most focus on
either the geometry or the topology of the curve and the ambient
space.
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Settings

I’ll consider two different settings (at least for the most part). First
setting:

The plane, sometimes minus a set of (polygonal) obstacles.
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Settings

Second setting: A combinatorial or piecewise linear orientable
surface.

Any such space is homeomorphic to a sphere with a number of
handles attached; we call this number the genus of the surface.
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Hausdorff distance

Hausdorff distance is one way to measure distance: consider any
point on one curve and find the closest point on the other curve.
Take the largest of all these distances.

More formally, given two curves γ1, γ2 : [0, 1]→ M:
dH(γ1, γ2) = max{sups∈[0,1] inft∈[0,1] d(γ1(s), γ2(t)),

supt∈[0,1] infs∈[0,1] d(γ1(s), γ2(t))}

d
H
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Fréchet Distance

With Fréchet distance (or dog leash distance), the flow of the
curve is accounted for.

Imagine a man walking along one curve and a dog along the other,
with a leash always connecting them, and minimize the length of
the longest leash.
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Fréchet Distance

More formally, given two curves γ1 and γ2, the Fréchet distance is:

F (A,B) = inf
α,β

max
t∈[0,1]

{d(γ1(α(t)), γ2(β(t)))}

where α and β are reparameterizations of [0, 1].
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Main tool: Free space diagram

Consider each pair of segments from the two curves, and calculate
which portions are within ε of each other.

We build the free space diagram by forming the n by m grid, and
determine if there is a matching that keeps the leash ≤ ε by
searching in this grid.

Erin Chambers Computing Optimal Homotopies



Computing the Fréchet distance

Alt and Godau gave the first algorithm to compute this for
piecewise linear curves in the Euclidean space: for a fixed ε, the
running time is O(mn logmn).

Parametric search techniques can then be applied to find the best
such ε; this adds an extra O(log n) to the running time.

Since the initial algorithm, it has been studied extensively:
applications, approximations, improved algorithms for restricted
classes of curves, and lower bounds are just a few of the many
results.
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Fréchet distance in higher dimensions

In addition, Fréchet distance has also been considered in higher
dimensions:

It is NP-Hard to compute the Fréchet distance between two
surfaces [Godau 1998].

Even NP-Hard to compute between terrains or polygons with
holes [Buchin-Buchin-Schulz 2010].

Still NP hard even for surfaces traced by curves
[Buchin-Ophelders-Speckmann 2015].

There is a (1 + ε)-approximation algorithm for computing
Fréchet distance between genus zero surfaces, where the
running time is bounded if the input surfaces are “nice”
[Nayyeri Xu 2016].
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Geodesic Fréchet Distance

When not in Rd , distance calculations are more complex since
shortest paths are not unique.

Definition

A geodesic is a path that
avoids any obstacles and
cannot be locally shortened by
perturbations.

In geodesic Fréchet distance, the leash is required to be a geodesic
in the ambient space.
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Geodesic Fréchet Distance

Algorithms are known in some limited settings, such as convex
polytopes [Maheshwari and Yi 2005] and simple polygons [Cook
Wenk 2008].
The algorithms essentially generalize Alt and Godau, and calculate
all geodesics of length ≤ ε, and looks for a path in the free space
diagram.
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Adding topology to our measures

So far, all the measures considered have been fairly geometric in
motivation: based primarily on actual distances between the
points.

If the curves live in some ambient space that is not simply
Euclidean space, then we have considerations beyond distance
calculations:

The definition of geodesic Fréchet distance will directly generalize
to surfaces, but does not force leashes to move continuously or to
be shortest paths.
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Homotopy

Definition

A homotopy is a continuous deformation of one path to another.
More formally, a homotopy between two curves α and β on a
surface M is a continuous function H : [0, 1]× [0, 1]→ M such
that H(·, 0) = α(·) and H(·, 1) = β(·).

ß
α

α ß
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Testing if two curves are homotopic

Testing if two curves are homotopic has been studied.

Cabello et al (2004) give an algorithm to test if two paths in
the plane minus a set of obstacles are homotopic in
O(n3/2 log n) time; there is also an output sensative algorithm
that takes O(log2 n) time per output vertex [Bespamyatnikh
2003].

Given a graph cellularly embedded on a surface and two
closed walks on that graph, there is an O(n) time algorithm
to decide if the two walks are homotopic [Dey and Guha 1999,
Lazarus and Rivaud 2011, Erickson and Whittlesey 2012].
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Combinatorially optimal homotopies

There is work [Chang-Erickson 2016] on finding the “best”
homotopy, as well; usually, this involves minimizing number of
simplifications moves to untangle a curve.

In the plane, they prove this is Θ(n3/2).

This connects to older results [Steinitz 1916, Francis 1969, Truemper
1989, Feo and Provan 1993, Noble and Welsh 2000], and electrical moves
on the medial graph of the input planar graphs.
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Beyond testing homotopy

However, in many applications we’d like to include more of a
notion of the geometry of the underlying space, as well.
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Homotopic Fréchet Distance

Homotopic Fréchet distance generalizes the Fréchet distance, but
adds the constraint that the curves must be homotopic, and the
leashes must move continuously in the ambient space.

ß
α

α ß

(We could just have really called this the width of the homotopy.)
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Height of a homotopy

The height of a homotopy is an orthogonal definition to homotopic
Fréchet distance:

dHH(γ1, γ2) = inf
homotopies H

{sup{|H(s, ·)| | s ∈ [0, 1]}}

ß
α

α ß

This is also sometimes called an L-homotopy [Frosini 1999, G.
Chambers-Liokumovich 2014] in the Riemannian setting, or a
B-northward migration in the combinatorial setting
[Brightwell-Winkler 2009].
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Homotopy area

Instead of focusing on the length or width, we can also examine
the total area swept by a homotopy or homology.

ß
α

α ß
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Which version?

Each of these options leads to a different notion of an “optimal”
homotopy:

ß
α

α ß

However, homotopy can be notoriously hard to compute! I’ll
discuss the trade-offs, both in terms of what the homotopy is
measuring and (more importantly) how computable the measures
are in various settings.
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Homotopic Fréchet Distance

The homotopic Fréchet distance is the length of the shortest leash
we can can use for our homotopy. Formally,

dF (γ1, γ2) = inf
homotopies H

{sup{|H(·, t))| | t ∈ [0, 1]}}
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Homotopic Fréchet Distance
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Homotopic Fréchet Distance
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Computing the Homotopic Fréchet Distance

There is a polynomial time algorithm algorithm to compute the
homotopic Fréchet Distance between two polygonal curves in the
plane minus a set of polygonal obstacles [C.-Colin de
Verdiére-Erickson-Lazard-Lazarus-Thite 2009].

The algorithm has some similarities to the work of Alt and Godau,
but is considerably more complex since there are an infinite
number of homotopy classes to consider.
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Characterizing leashes

Lemma

There exists an optimum homotopic Fréchet map such that the
leash at every time is a shortest path (in its homotopy class).

We allow the leash to pass “through” obstacles, and record the
number of times a leash winds around an obstacle, giving unique
homotopy classes.

This gives us unique shortest paths in every homotopy class,
although we still have an infinite number of homotopy classes.
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leash at every time is a shortest path (in its homotopy class).

We allow the leash to pass “through” obstacles, and record the
number of times a leash winds around an obstacle, giving unique
homotopy classes.

This gives us unique shortest paths in every homotopy class,
although we still have an infinite number of homotopy classes.

Erin Chambers Computing Optimal Homotopies



Characterizing leashes

Lemma

There exists an optimum homotopic Fréchet map such that the
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Key lemma

Lemma

When obstacles are points, an optimal homotopy class contains a
straight line segment.

This allows us to brute force a set of possible homotopy classes
which could be optimal, by trying all straight line segments.
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How bad could this be?

However, there are still a lot of possible straight line segments:
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Algorithm

1 List all O(mn|P|2) straight line segments.

2 For each homotopy class h (given by a straight line segment),
compute Fh(A,B) in O(mn|P| logmn|P|) time.

The computation of Fh(A,B) uses techniques from the original
Fréchet distance computations [Alt-Godau], as well as parametric
search.
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Generalization to polygonal obstacles

Here, the optimal leash map may be pinned at a common subpath,
which is a globally shortest path between obstacles.

This gives O(mn|P|4) possible
homotopy classes.
In addition, we must run the
free space and parametric
search algorithm for each
relative homotopy class.
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Homotopic Fréchet Distance in other settings

It is unlikely that this approach can generalize to surfaces, since it
heavily relies on nonpositive curvature. (We’ll talk about weighted
obstacles a bit later, though.)

We can generalize the key
lemmas to any surface of
nonpositive curvature.
However, the algorithmic tools
in those settings are (mostly)
lacking.

Erin Chambers Computing Optimal Homotopies
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Back to homotopy height

Recall that the height of a homotopy is an orthogonal definition to
homotopic Fréchet distance:

dHH(γ1, γ2) = inf
homotopies H

{sup{|H(s, ·)| | s ∈ [0, 1]}}

ß
α

α ß
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Formalizing the notation

A homotopy through closed curves is a
continuous map h : S1 × [0, 1]→ Σ, where
Σ is a triangulated surface.

We let h(t) be the curve h(·, t), and the
homotopy goes from h(0) to h(1); the
height is then supt ||h(t)||.

An isotopy between the two curves is a
homotopy where all h(t) are simple curves.
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Structure of optimal homotopies

[G. Chambers and Liokumovich] prove that some optimal
homotopy is actually an isotopy.

Sketch:

Take a homotopy of height L from γ to γ′

Decompose into a sequence of curves γ = γ1, . . . γn = γ′, with
at most 1 Reidemeister move between each γi and γi+1
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Structure of optimal homotopies (cont)

[G. Chambers and Liokumovich] prove that some optimal
homotopy is actually an isotopy.

Sketch (cont):

We then consider all resolutions of the crossings that would
get a single, simple curve
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Structure of optimal homotopies (cont)

[G. Chambers and Liokumovich] prove that some optimal
homotopy is actually an isotopy.

Sketch (cont):

Then construct “trivial” isotopies of height at most L between
resolutions that are 1 Reidemeister move apart.

Note: not all of these have a trivial isotopy between them!
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Structure of optimal homotopies (cont)

[G. Chambers and Liokumovich] prove that some optimal
homotopy is actually an isotopy.

Sketch (cont):

To fix this, they actually build a graph: vertices are the
resolutions, and edges are the trivial isotopies of height < L.

Most of the work is then proving that the graph contains a
path from γ to γ′. (Surprisingly, this all boils down to the
handshaking lemma.)
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Monotone isotopies

In [Chambers-Chambers-de Mesmay-Ophelders-Rotman], we show
that in fact this isotopy is always monotone, so that ht and ht′ are
disjoint for any t < t ′:
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Monotone isotopies

Note that these don’t always exist! In particular, if you do not
start with the boundary of the disk, the best isotopy sometimes
won’t be monotone:
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Monotone isotopies

In [Chambers, Chambers, de Mesmay, Ophelders and Rotman] we
show that monotone isotopies always exist when the curves bound
an annulus.
Proof sketch:

Decompose the isotopy into monotone sub-isotopies, where hi
goes from γi to γi+1:
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Monotone isotopies - proof

In [Chambers, Chambers, de Mesmay, Ophelders and Rotman] we
show that monotone isotopies always exist when the curves bound
an annulus.
Proof sketch:

Decompose the isotopy into monotone sub-isotopies, where hi
goes from γi to γi+1:
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Monotonicity

High level idea:

If later parts (say hi+1) of the homotopy come back inside a
previously swept portions, we want to construct a retract
which stays outside:
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Monotonicity

High level idea:

These are almost isotopies of length < L: winding around can
cause trouble if “bubbles” are introduced in the wrong way,
and then length increases too much

However, if the inner boundary is the shortest nontrivial curve
in the annulus, we can prove that these are isotopies of length
< L.

Erin Chambers Computing Optimal Homotopies



Homotopy height is in NP

In the discrete setting, we have a triangulated annulus, and we
discretize the homotopy accordingly:

(This is essentially what Brightwell and Winkler called a
b-northward migration in their work, although they did not
consider spikes.)
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Primal versus dual

If we dualize the graph, then face moves correspond to change of
crossings in the dual graph:

Monotonicity does still hold in this discretized setting if we start on
the boundary of the disk, essentially since this is a very simple type
of Riemannian disk.
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Non-boundary case

Note that we still cannot assume that the sweep is montone if we
do not begin at the boundary:

0 01 13 32 1 4 55 46 87 78 109 10 11 9

(Example courtesy of Arnaud de Mesmay)
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The dual problem

This problem in the dual is very close to the cut width of a graph,
where we fix a single embedding:

3 35 24 24 5 1230

20 20

10

Note: this is open even with unit weights, since NP hardness
reductions for cut width alter the embedding of the underlying
graph.
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Showing NP-Hardness

Monotonicity implies that each face flips at most once, but it does
not prove the problem is in NP!

The issue is edges: those can be spiked many times from different
directions.
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Bounding spikes

We show that spikes can be delayed or done early, to simplify the
structure. Long paths of spikes will contain spirals, which we can
simplify (essentially by case analysis):

In the end, get a quadratic bound on the number of spikes on any
given edge, so homotopy height is in NP.
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Back to homotopic Fréchet

We were also able to show that a close variant of homotopic
Fréchet distance is in NP as well.

If you fix the start and end leashes of the homotopy, then you can
transform an instance of the homotopic Fréchet problem into one
of homotopy height:

Σγ0 γ1

P

Q

p0
p1

q1

q0

Σγ0 γ1

P

Q

p0
p1

q1

q0

K

v
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Approximation algorithms

The first algorithmic work on homotopy height
[Har-Peled-Nayyeri-Salavatipour-Sidiropoulos 2012] is O(log n)
approximation algorithm for computing both the homotopy height
and the homotopic Fréchet distance between two curves on a PL
surface.

They use a clever divide and
conquer algorithm based on
shortest paths for homotopy
height, and then use this
algorithm as a subroutine to
solve homotopic Fréchet
distance.

u
v

πv

v�

L

R

s

t

D 1

D 2

Erin Chambers Computing Optimal Homotopies



Approximation algorithms

The first algorithmic work on homotopy height
[Har-Peled-Nayyeri-Salavatipour-Sidiropoulos 2012] is O(log n)
approximation algorithm for computing both the homotopy height
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distance.

u
v

πv

v�

L

R

s

t

D 1

D 2

Erin Chambers Computing Optimal Homotopies



Algorithms in some simple cases

In a recent paper [Burton et al 2017], we consider homotopy height
and homotopic Fréchet distance with a weighted set of point
obstacles in a simple polygon, where the two input curves and
initial and final leash together form the boundary of the polygon.

The leash cost at any given time in this setting is the length of the
leash plus the weight of any spikes it passes over.
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Homotopic Fréchet distance in spiked polygons

It is easy to see that the optimal homotopic Fréchet map must be
larger than each of the following: the initial leash, the final leash,
the geodesic Fréchet distance (ignoring the obstacles), and the
maximum weight point obstacle.

Therefore, we can compute a 2-approximation by following the
geodesic Fréchet map and perturbing slightly to move over
obstacles one at a time.
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Homotopy height in spiked polygons

We also solve the problem of computing homotopy height when
the obstacles are unit weight points.

We prove that you can decompose
the optimal homotopy in a natural
way:

fixed endpoints but can move
over spikes

endpoints of the leash can
move, but don’t sweep any
spikes (and stay geodesic in this
homotopy class)

Erin Chambers Computing Optimal Homotopies



How to compute this?

Well, when not crossing an obstacle, we are in a single relative
homotopy class, like when we computed homotopic Fréchet
distance free spaces of obstacle points.

So: compute the ε and ε− 1 free space diagrams of all relative
homotopy classes which contain a straight line segment. (There
are O(k2) of these.)
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How to compute this? (cont)

Then compute a path through these free space diagrams.

Run time: O(n4k6 log n + n4k8 + k12).
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Then compute a path through these free space diagrams.

Run time: O(n4k6 log n + n4k8 + k12).

Erin Chambers Computing Optimal Homotopies



How to compute this? (cont)

Then compute a path through these free space diagrams.

Run time: O(n4k6 log n + n4k8 + k12).
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Arbitrary weight obstacles

For arbitrary weight obstacles, we can’t break an optimal
homotopy into such nice cases, unfortunately.

Intermediate leashes may have linear
complexity. (Even if the polygon is
convex.)
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Exact complexity?

The exact complexity of this problem is unknown, however. So far:

Combinatorial versions (on graphs) are in NP.

Some algorithms for simple obstacles in the plane. (Not very
fast, though.)

O(log n)-approximation algorithm in the plane.

However, still don’t know if it’s NP-Hard on graphs, or any
reasonable algorithms for terrains or even arbitrary weighted point
obstacles.
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Connections to other graph parameters

As mentioned earlier, homotopy height is quite naturally related to
several other parameters.

Recall: homotopy height in a graph where the curve does not spike
is the same as cut width of the dual graph (where embedding stays
fixed):
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We will call this simple homotopy height.
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Bar Visibility Representation

A bar visibility representation of a graph G is a representation
where each vertex is mapped to a bar, and any two vertices are
connected in G if and only if the corresponding bars have a verticle
line segment that connected them and intersects no other bar.

From [Babbit 2012]

Erin Chambers Computing Optimal Homotopies



Bar visibility

If we require bars to be drawn on horizontal integer lines, then the
bar visibility height is the smallest height possible.

It is known that any planar graph has a bar visibility representation
[Wismath 1985, Tamassia-Tollis 1986, Rosentiehl-Tarjan 1986].

Bar visibility height is always less than or equal to 2 times the
straight line drawing height: the minimum height grid such that G
can be embedded on integer points and drawn with straight line
edges [Biedl 2014]:
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Bar visibility and simple homotopy height

We [Biedl et. al, unpublished] also consider a new variant where we
fix vertices s and t on the outer face, and ask for the minimum
visibility height that places s on the top and t on the bottom of
the representation.

We prove that this is in fact exactly the same as simple homotopy
height:
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Node searching or sweeping

Searching is another graph theory parameter, modeling how long it
takes to sweep through a graph. In all variants, the edges of the
graph are contaminated, and the graph must be cleared by guards.
If at any point a cleared edge has a path to a contaminated one
with no guards on the path, then it becomes recontaminated.

Search number: At each step, you may add a new guard to
any vertex, remove a guard from a vertex, or move a guard
along an indicent edge of the current vertex in order to reach
a new vertex. An edge is cleared when a guard moves over it.

Connected search number: The same as node searching, but
the set of edges cleared stays connected through the search.

Monotonic search number: If the set of cleared edges only
grows at every stage, then the search is monotonic.
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Connection to homotopy height

Node searching has clear connections to homotopy height:
homotopies are one type of search. (This is actually why we
originally looked at it, since node searching is always monotonic
[LaPaugh 1993, Bienstock-Seymour 1991].)

However, homotopy height is actually strictly stronger than even
connected graph searching: both sides of the “cut” must stay
connected for it to be a homotopy.

Interestingly, it is
known that
connected search
number is NOT
monotonic [Yang,
Dyer, Alspach
2009].
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Homology “height” (or length, more accurately)

Homology is a coarser invariant than homotopy - all
homotopies produce homologies, but not all homologies come
from homotopies.

In general, homology is more tractable than homotopy -
reduces to a linear algebra problem, and software is widely
available and highly optimized.
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Homologous Subgraphs

Definition

Two even subgraphs are Z2-homologous if their union forms a cut
on the surface.
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Homology height: NP-Hard

In fact, homology length is precisely the same as the cutwidth of
the dual graph (once you adapt the monotonicity proof from graph
searching [Bienstock-Seymour 1991]):
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Here, you can line the vertices up even if they are not dual to
adjacent faces: this corresponds to a new piece of the homology
cycle appearing around the face, since all dual edges will be cut.
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Area of a homotopy

Recall that instead of focusing on the length or width, we can also
examine the total area swept by a homotopy or homology.

ß
α

α ß
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Computing homotopy area

Surprisingly, this measure is much more tractable than any other
measure based on homotopy, even for non-disjoint curves.

α

ß
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Computing homotopy area

Surprisingly, this measure is much more tractable than any other
measure based on homotopy, even for non-disjoint curves.
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Definition

More formally, given a homotopy H, the area of H is defined as:

Area(H) =

∫
s∈[0,1]

∫
t∈[0,1]

∣∣∣∣dHds × dH

dt

∣∣∣∣ dsdt

We are then interested in the smallest such value: infH Area(H).

Note that in generally, this is an improper integral, and the value
for any H is not necessarily even finite.
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Douglas and Rado’s work

Douglas and Rado (1930’s) were the first to consider this problem,
as a variant of Plateau’s problem (1847) dealing with soap bubbles
and minimal surfaces.

[Minimal sub manifolds and related topics, Y. L. Xin]
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Realizing the minimum area

There is an additional problem in that to find the infimum, we
might have a pathological case where a sequence of good H’s
converge to something that is not even continuous.

[Lectures on Minimal Submanifolds, H. B. Lawson]
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Douglas’ theorem

They developed a restricted version using Dirichlet integrals (or
energy integrals) which allow control over the parameterizations of
the minimal surfaces. These integrals not only minimize area, but
also ensure (almost) conformal parameterizations in the space.

Theorem

Let γ be a finite Jordan curve in Rn. Then there exists a
continuous map Γ :

{
(x , y) ∈ R2 : x2 + y2 ≤ 1

}
→ Rn such that:

1 Γ maps the boundary of the disk monontically onto γ.

2 Γ is harmonic and almost conformal

3 Γ realizes the infimum of all areas

(Well, I’m hiding a few details about the Dirichlet integrals here...)
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Necessary assumptions

In [C-Wang 2013], we consider a much simpler setting - we are
either in R2 or a piecewise linear surface. However, we do need
some assumptions in order for the minimum area homotopy to
exist.

We must assume that H is continuous and piecewise
differentiable (so it is differentiable everywhere except at a
finite set of points and arcs).

We must also assume the homotopy is monotone along the
boundary of the domain and is regular on the interior
(meaning intermediate curves are “kink-free”).

Finally, we will assume our input curves (on M) are simple
and have a finite number of piecewise analytic components.
(In practice, they will simply be PL curves.)

Erin Chambers Computing Optimal Homotopies



Necessary assumptions

In [C-Wang 2013], we consider a much simpler setting - we are
either in R2 or a piecewise linear surface. However, we do need
some assumptions in order for the minimum area homotopy to
exist.

We must assume that H is continuous and piecewise
differentiable (so it is differentiable everywhere except at a
finite set of points and arcs).

We must also assume the homotopy is monotone along the
boundary of the domain and is regular on the interior
(meaning intermediate curves are “kink-free”).

Finally, we will assume our input curves (on M) are simple
and have a finite number of piecewise analytic components.
(In practice, they will simply be PL curves.)

Erin Chambers Computing Optimal Homotopies



Necessary assumptions

In [C-Wang 2013], we consider a much simpler setting - we are
either in R2 or a piecewise linear surface. However, we do need
some assumptions in order for the minimum area homotopy to
exist.

We must assume that H is continuous and piecewise
differentiable (so it is differentiable everywhere except at a
finite set of points and arcs).

We must also assume the homotopy is monotone along the
boundary of the domain and is regular on the interior
(meaning intermediate curves are “kink-free”).

Finally, we will assume our input curves (on M) are simple
and have a finite number of piecewise analytic components.
(In practice, they will simply be PL curves.)

Erin Chambers Computing Optimal Homotopies



Algorithm in the plane

In the plane, we consider the decomposition of the plane given by
the union of the two curves.

P

Q

(I’m drawing continuous curves here for simplicity, but think of
these as PL when we get to the running time.)
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Anchor points

Note that any vertex of intersection could either be fixed
throughout the homotopy (we call this an anchor point) or could
be moved by the homotopy.

P

Q

s

t

q1 q2 q3

p3p2

p1

We prove that the ordering of the anchor points along the two
curves P and Q will be the identical, and in between anchor points,
we prove that the homotopy will always move locally forward.
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Winding numbers

The winding number of a closed curve γ with respect to a point x ,
wn(x ; γ) is the number of times that curve travels
counterclockwise around the point.
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Using the winding number

Lemma

Any homotopy with no anchor points will have consistent winding
numbers (all non-negative or all non-positive).
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Calculating with no anchor points

Lemma

If P ◦ Q has consistent winding numbers, then:

inf
H

Area(H) =

∫
R2

|wn(x ;P ◦ Q)|dx
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0
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The algorithm: dynamic programming

Our algorithm now proceeds quite simply.

We can compute the winding number of each planar region. If
all are non-positive or non-negative, then we simply sum the
areas of each region with multiplicity given by the winding
number.

If the numbers are not consistent, then we know there is at
least one anchor point. Since the order of the anchor points
along each curve is the same, we can enumerate all the
possible sets of anchor points, and in between the anchor
points compute the winding numbers again.
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Running time in the plane

Let I be the number of intersections and n be the complexity of
the input curves.

We give an algorithm that can be implemented in O(I 2n) time
using dynamic programming, which simply builds up the sets of
anchor points iteratively and uses previous solutions to speed up
future computation.

However, this can be improved to O(I 2 log I ) time with
O(I log I + n) preprocessing if we are more careful about how we
compute the winding numbers.
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More recent algorithms for homotopy area

There has also been recent work to compute the best area
homotopy when the input curve is an immersion of a disk into the
plane.

Nie 2014 connects this problem to the weighted cancellation
norm, which is a combinatorial way to covert the best
homotopy into a series of reduction moves on a word problem.

Fasy-Karakoc-Wenk 2016 consider a different approach which
is more geometric, building up an exponential time algorithm,
although they are working on dynamic programming
techniques to speed this up.
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Homotopy area on a surface

Our paper [C.-Wang] also considers the algorithm for surfaces,
which builds upon the planar algorithm.

ß
α

α ß

Consider two homotopic curves on a triangulated surface M with
positive genus.
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The universal cover

Let U(M) be the universal covering space of M. This is a simply
connected (i.e. planar) domain, along with an associated map
φ : U(M)→ M which is continuous, surjective, and a local
homeomorphism.
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Lifting P and Q

If we fix a lift for the endpoints of P and Q in the universal cover
U(M), then P ◦ Q lifts to a unique closed curve in U(M).
Therefore, any homotopy between P and Q on M will correspond
to a homotopy between their lifts in U(M) with the same area.

P̃P

Q̃
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Algorithm for surfaces

We construct a portion of the universal cover which contains the
lifts of P and Q as well as the regions inside their concatenation.

We then use our planar algorithm in
U(M), since similar results about the
winding number will hold. Since we
can simplify much of the interior of
the regions in our representation, the
total running time here is
O(gK logK + I 2 log I + In).

P̃P

Q̃

R1

R2

R3
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How to compute homology area

Formally (joint work with Mikael Vejdemo Johansson, and
originally considered in slightly more restricted settings in Dey,
Hirani and Krishnamoorthy):

Given cycles α and β, try to compute z such that dz = α− β.

Goal: compute z with a smallest area. Recall that d is a linear
operator, and z and α− β are vectors.

Optimization problem is then:
arg minz (area z), subject to dz = α− β.
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Homology versus homotopy area

Note again that this is NOT the same as homotopy area, at least
for d ≤ 3:
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Final algorithm for homology area

In matrix multiply time, we can compute the best area homology
on meshes:

Erin Chambers Computing Optimal Homotopies



Chair model
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Crab model
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Isotopy

Definition

An isotopy is a homotopy H such that for each fixed time t,
H(x , t) is a homeomorphism.

A homeomorphism is a function which is a continuous bijection
where the inverse is also continuous. In our setting, this will mean
that every intermediate curve in the homotopy must also have an
image that is simple.
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Isotopic Fréchet Distance

In [C.-Ju-Letscher 2009], we introduced the idea of isotopic
Fréchet distance:

I(A,B) = inf
h : M × I → M

h(·, t) homeomorphism
h(x , 0) = x ∀x ∈ X

h(A, 1) = B

maxx∈X lenh(x , ·)

In other words, what’s the longest trajectory in an ambient isotopy?

Note the difference with homotopy height: there, the intermediate
curves stayed simple, but here, we want the leashes to form an
isotopy as well.
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Isotopic Fréchet Distance

If A and B are not ambiently isotopic then I(A,B) =∞.
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Homotopic versus Isotopic Fréchet Distance

Proposition For any L > 0 and ε ∈ (0, L/2) there exists a pair of
curves C1,C2 ∈ R2 with

F(C1,C2) = H(C1,C2) = ε

I(C1,C2) ≥ 2

9
L
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The best homotopy versus an isotopy

Homotopy:

Isotopy?:
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The best homotopy versus an isotopy

Actually, the best isotopy is even more complicated! The prior
picture gave a distance of

√
L2 + ε2. This was off by a factor of

roughly 2 [Buchin-C.-Ophelders-Speckmann 2017]:

ε

L
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Open questions

There is no algorithm to compute or approximate homotopic
Fréchet distance on surfaces (or even polyhedra).

Height of a homotopy algorithms (or hardness) are also open;
all that is known is an O(log n) approximation and that it’s in
NP.

These seem to be connected to all sorts of graph parameters,
and even suggest some new variants to consider.

It is unknown how to compute homotopy area between cycles
on surfaces.

Not clear if we can generalize any of these ideas (besides
homology area) to surfaces instead of curves. Fréchet distance
gets harder when you move to surfaces, but we don’t know
anything about topological variants.
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