Delaunay triangulations of a family of symmetric hyperbolic surfaces in practice

lordan lordanov

Ph.D. defense 12 March 2019 | Nancy, France

Why this topic? Delaunay triangulations CGAL State of the art

Most symmetric surface of genus 2: Bolza

Mathematical physics

[Balazs, Voros '86]

chaos

[Sausset, Tarjus, Viot '08]

[Chossat, Faye, Faugeras '11]

glass forming liquid visual perception of textures

Why this topic? Delaunay triangulations CGAL State of the art

What is a Delaunay triangulation?

Why this topic? Delaunay triangulations CGAL State of the art

Bowyer's algorithm

Why this topic? Delaunay triangulations CGAL State of the art

Bowyer's algorithm

loria . Om

Why this topic? Delaunay triangulations CGAL State of the art

Bowyer's algorithm

Why this topic? Delaunay triangulations CGAL State of the art

Bowyer's algorithm

Why this topic? Delaunay triangulations CGAL State of the art

Bowyer's algorithm

Why this topic? Delaunay triangulations CGAL State of the art

The Computational Geometry Algorithms Library CGAL

- CGAL project: founded in 1996
- CGAL library: open source since 2003
- Today:
 - open-source library for CG
 - over 100 packages (triangulation, mesh, arrangements...)
 - used in GIS, CAD, medical imaging, robotics...

Our goal:

implement triangulations of hyperbolic surfaces in CGAL

Introduction Why this topic? Background Delaunay triang Delaunay triangulations of M_g Future directions State of the art

State of the art

- Closed Euclidean manifolds
 - Algorithms
 - 2D [Mazón, Recio '97]
 - 3D [Dolbilin, Huson '97]
 - *d*D [Caroli, Teillaud '16]
 - Software (square/cubic flat torus)
 - 2D [Kruithof '13]
 - 3D [Caroli, Teillaud '09]
- CGAL

- Closed hyperbolic manifolds
 - Algorithms
 - 2D, genus 2 [Bogdanov, Teillaud, Vegter, SoCG'16]

Closed orientable surfaces The hyperbolic plane Symmetric hyperbolic surfaces From theory to practice

Cutting open a flat torus

(nria lon Ome

Closed orientable surfaces The hyperbolic plane Symmetric hyperbolic surfaces From theory to practice

Cutting open a double torus

lordan lordanov

Delaunay triangulations of symmetric hyperbolic surfaces in practice

Closed orientable surfaces The hyperbolic plane Symmetric hyperbolic surfaces From theory to practice

Cutting open a double torus

Closed orientable surfaces The hyperbolic plane Symmetric hyperbolic surfaces From theory to practice

Cutting open a double torus

(nria 00 million

lordan lordanov

Delaunay triangulations of symmetric hyperbolic surfaces in practice

21 / 70

Closed orientable surfaces The hyperbolic plane Symmetric hyperbolic surfaces From theory to practice

Cutting open a double torus

loria . Om

Closed orientable surfaces The hyperbolic plane Symmetric hyperbolic surfaces From theory to practice

Cutting open a double torus

cannot tile Euclidean plane!

(nria loro O missi

Closed orientable surfaces The hyperbolic plane Symmetric hyperbolic surfaces From theory to practice

Cutting open a double torus

can tile hyperbolic plane!

(nria loro O mini

Closed orientable surfaces The hyperbolic plane Symmetric hyperbolic surfaces From theory to practice

Cutting open a double torus

Inia los Ome

Closed orientable surfaces **The hyperbolic plane** Symmetric hyperbolic surfaces From theory to practice

Poincaré model of the hyperbolic plane \mathbb{H}^2

(nria loro O missi

Closed orientable surfaces **The hyperbolic plane** Symmetric hyperbolic surfaces From theory to practice

Hyperbolic translations a(q)Special case: axis = diameter a(p)p $\ell(a)$

(nria 00 million

lordan lordanov

Closed orientable surfaces **The hyperbolic plane** Symmetric hyperbolic surfaces From theory to practice

Hyperbolic translations Side-pairing transformation

(nria 00 million

Closed orientable surfaces **The hyperbolic plane** Symmetric hyperbolic surfaces From theory to practice

29 / 70

Closed orientable surfaces **The hyperbolic plane** Symmetric hyperbolic surfaces From theory to practice

Tilings of the Euclidean and hyperbolic planes

(nia 00 miles

Closed orientable surfaces **The hyperbolic plane** Symmetric hyperbolic surfaces From theory to practice

Tiling of the hyperbolic plane with octagons

(nría 🖤 🛛

Closed orientable surfaces **The hyperbolic plane** Symmetric hyperbolic surfaces From theory to practice

Tiling of the hyperbolic plane with octagons

(nria loro O missi

Closed orientable surfaces **The hyperbolic plane** Symmetric hyperbolic surfaces From theory to practice

Tiling of the hyperbolic plane with octagons

Inia 00 mes

Closed orientable surfaces **The hyperbolic plane** Symmetric hyperbolic surfaces From theory to practice

Tiling of the hyperbolic plane with octagons

(nría 00 mar

Closed orientable surfaces **The hyperbolic plane** Symmetric hyperbolic surfaces From theory to practice

Tiling of the hyperbolic plane with octagons

(nría 00 mar

Closed orientable surfaces **The hyperbolic plane** Symmetric hyperbolic surfaces From theory to practice

Tiling of the hyperbolic plane with octagons

Closed orientable surfaces **The hyperbolic plane** Symmetric hyperbolic surfaces From theory to practice

Tiling of the hyperbolic plane with octagons

loria 🔤 🚥

Closed orientable surfaces **The hyperbolic plane** Symmetric hyperbolic surfaces From theory to practice

Tiling of the hyperbolic plane with octagons

loria 🔤 🚥

Closed orientable surfaces **The hyperbolic plane** Symmetric hyperbolic surfaces From theory to practice

Tiling of the hyperbolic plane with octagons

loria 🔤 🚥

Closed orientable surfaces **The hyperbolic plane** Symmetric hyperbolic surfaces From theory to practice

Tiling of the hyperbolic plane with octagons

(nría 🖤 🛛

Closed orientable surfaces The hyperbolic plane Symmetric hyperbolic surfaces From theory to practice

The square flat torus and the Bolza surface

Euclidean: translation group

$$\Gamma_1 = \left\langle a, b \mid ab\overline{a}\overline{b} = \mathbb{1} \right\rangle$$

Flat torus: $\mathbb{M}_1 = \mathbb{E}^2 / \Gamma_1$ with projection map $\pi_1 : \mathbb{E}^2 \to \mathbb{M}_1$

Hyperbolic: Fuchsian group

$$\Gamma_2 = \left\langle a, b, c, d \mid abcd\overline{a}\overline{b}\overline{c}\overline{d} = \mathbb{1} \right\rangle$$

Bolza surface: $\mathbb{M}_2 = \mathbb{H}^2/\Gamma_2$ with projection map $\pi_2 : \mathbb{H}^2 \to \mathbb{M}_2$

Closed orientable surfaces The hyperbolic plane Symmetric hyperbolic surfaces From theory to practice

The square flat torus and the Bolza surface

 \overline{a} v_{2} v_{1} v_{1} v_{1} v_{2} v_{1} v_{2} v_{2} v_{3} v_{2} v_{2} v_{3} v_{2} v_{3} v_{3} v_{2} v_{3} v_{3}

Euclidean: translation group

$$\Gamma_1 = \left\langle a, b \mid ab\overline{a}\overline{b} = \mathbb{1} \right\rangle$$

Flat torus: $\mathbb{M}_1 = \mathbb{E}^2 / \Gamma_1$ with projection map $\pi_1 : \mathbb{E}^2 \to \mathbb{M}_1$

Hyperbolic: Fuchsian group

$$\Gamma_2 = \left\langle a, b, c, d \mid abcd\overline{a}\overline{b}\overline{c}\overline{d} = \mathbb{1} \right\rangle$$

Bolza surface: $\mathbb{M}_2 = \mathbb{H}^2/\Gamma_2$ with projection map $\pi_2 : \mathbb{H}^2 \to \mathbb{M}_2$

Closed orientable surfaces The hyperbolic plane Symmetric hyperbolic surfaces From theory to practice

Symmetric hyperbolic surfaces of genus $g \ge 2$

angle sum = 2π for all 4*g*-gons!

Let Γ_g : Fuchsian group with finite presentation similar to Bolza $\rightarrow 2g$ generators, single relation

Symmetric hyperbolic surface: $\mathbb{M}_g = \mathbb{H}^2/\Gamma_g$, $g \ge 2$ with natural projection mapping $\pi_g : \mathbb{H}^2 \to \mathbb{M}_g$

(nria 00 million
Closed orientable surfaces The hyperbolic plane Symmetric hyperbolic surfaces From theory to practice

Dirichlet regions

lordan lordanov

Background Delaunay triangulations of M_{g} Future directions

Symmetric hyperbolic surfaces

Dirichlet regions

35 / 70

Closed orientable surfaces The hyperbolic plane Symmetric hyperbolic surfaces From theory to practice

Delaunay triangulation

S set of points in D_g

Closed orientable surfaces The hyperbolic plane Symmetric hyperbolic surfaces From theory to practice

Delaunay triangulation

orbits $\Gamma_g S$ in \mathbb{H}^2

 $\begin{array}{c} \text{Introduction}\\ \textbf{Background}\\ \text{Delaunay triangulations of } M_g\\ \text{Future directions} \end{array}$

Closed orientable surfaces The hyperbolic plane Symmetric hyperbolic surfaces From theory to practice

Delaunay triangulation

Delaunay triangulation in \mathbb{H}^2 $DT_{\mathbb{H}}(\Gamma_g S)$

 $\begin{array}{c} \text{Introduction}\\ \textbf{Background}\\ \text{Delaunay triangulations of } M_g\\ \text{Future directions} \end{array}$

Closed orientable surfaces The hyperbolic plane Symmetric hyperbolic surfaces From theory to practice

Delaunay triangulation

Delaunay triangulation of \mathbb{M}_g $DT_{\mathbb{M}_g}(S)$

Introduction Closed orienta Background The hyperboli Delaunay triangulations of Mg Future directions From theory t

Closed orientable surfaces The hyperbolic plane Symmetric hyperbolic surface From theory to practice

Delaunay triangulation

Introduction Closed orientable surfac Background The hyperbolic plane Delaunay triangulations of Mg Future directions From theory to practice

Delaunay triangulation

Introduction G Background T Delaunay triangulations of M_g S Future directions F

Closed orientable surfaces The hyperbolic plane Symmetric hyperbolic surfaces From theory to practice

Validity condition

[BTV16]

projection of $DT_{\mathbb{H}}(\Gamma_g S)$ on the surface \mathbb{M}_g

 \rightarrow not necessarily a simplicial complex!

Systole of a surface = minimum length of a non-contractible loop on the surface

41 / 70

Closed orientable surfaces The hyperbolic plane Symmetric hyperbolic surfaces From theory to practice

Validity condition

[BTV16]

projection of $DT_{\mathbb{H}}(\Gamma_g S)$ on the surface \mathbb{M}_g

ightarrow is a simplicial complex, if

$$\delta_{\mathcal{S}} < rac{1}{2} \mathsf{sys}(\mathbb{M}_g), \quad \mathsf{where}$$

 $\delta_{\mathcal{S}} = \text{diameter of largest disks in } \mathbb{H}^2$ not containing any point of $\Gamma_g S$

 $DT_{\mathbb{M}_g}(S) := \pi_g(DT_{\mathbb{H}}(\Gamma_g S))$

(nria 00 million

Introduction Closed orientable surfaces Background The hyperbolic plane Delaunay triangulations of Mg Future directions From theory to practice

Computing Delaunay triangulations of \mathbb{M}_{g}

Use set of *dummy points* Q_g that satisfies the validity condition:

$$S:= Q_g igcup P \Longrightarrow \delta_S < rac{1}{2} {
m sys}({\mathbb M}_g)$$
 always

lordan lordanov

Introduction Closed orientable surfaces Background The hyperbolic plane Delaunay triangulations of Mg Future directions From theory to practice

Computing Delaunay triangulations of \mathbb{M}_g

Use set of *dummy points* Q_g that satisfies the validity condition:

$$S:= Q_g igcup P \Longrightarrow \delta_S < rac{1}{2} \mathsf{sys}(\mathbb{M}_g)$$
 always

Algorithm for Delaunay triangulations of \mathbb{M}_{g}

[BTV16]

- **1** initialize DT_{M_g} with a set of dummy points Q_g
- **2** insert input points P in the triangulation
- **3** remove points of Q_g from the triangulation, if possible

 \rightarrow condition preserved with insertion of new points

 \rightarrow final triangulation might contain dummy points

(nria 00 million

Representation of the triangulation Implementation and results (Bolza) Dummy points for genus $g \ge 2$ Implementation and results (genus g)

Problem statement

To compute $DT_{\mathbb{M}_{g}}(S)$, we need to *choose* what to store.

Requirement: all input points lie in D_g \rightarrow unique representative in $D_g \subset \mathbb{H}^2$ for each point on \mathbb{M}_g

Question: How to choose a unique representative for each face?

Representation of the triangulation Implementation and results (Bolza) Dummy points for genus $g \ge 2$ Implementation and results (genus g)

Inclusion property

Let $S \subset D_g$ be a point set such that

 $\delta_{\mathcal{S}} < \frac{1}{2} \operatorname{sys}(\mathbb{M}_g).$

Let σ be a face of $DT_{\mathbb{H}}(\Gamma_g S)$ with at least one vertex in D_g $\Rightarrow \sigma$ is contained in D_N

Proof:

- for $g = 2 \rightarrow$ [IT, SoCG '17]
- for $g \ge 2 \rightarrow$ [EITV]

Representation of the triangulation Implementation and results (Bolza) Dummy points for genus $g \ge 2$ Implementation and results (genus g)

Canonical representatives of faces

Canonical representative: face with at least one vertex in D_g \rightarrow other vertices will be in D_N

Representation of the triangulation Implementation and results (Bolza) Dummy points for genus $g \ge 2$ Implementation and results (genus g)

Canonical representatives of faces

Canonical representative: face with at least one vertex in D_g \rightarrow other vertices will be in D_N

To make it unique:

 \rightarrow choose the face "closest" to the first Dirichlet neighbor

Representation of the triangulation Implementation and results (Bolza) Dummy points for genus $g \ge 2$ Implementation and results (genus g)

Canonical representatives of faces

Canonical representative: face with at least one vertex in D_g \rightarrow other vertices will be in D_N

To make it unique:

 \rightarrow choose the face "closest" to the first Dirichlet neighbor

Representation of the triangulation Implementation and results (Bolza) Dummy points for genus $g \ge 2$ Implementation and results (genus g)

CGAL triangulation data structure

(nila 🖤 🕔 🛤

lordan lordanov

Representation of the triangulation Implementation and results (Bolza) Dummy points for genus $g \ge 2$ Implementation and results (genus g)

Canonical representatives can cross the boundary

Representation of the triangulation Implementation and results (Bolza) Dummy points for genus $g \ge 2$ Implementation and results (genus g)

CGAL extended triangulation data structure

lordan lordanov

Representation of the triangulation Implementation and results (Bolza) Dummy points for genus $g \ge 2$ Implementation and results (genus g)

Representation of the triangulation Implementation and results (Bolza) Dummy points for genus $g \ge 2$ Implementation and results (genus g)

(nría 🔤 🖤

Representation of the triangulation Implementation and results (Bolza) Dummy points for genus $g \ge 2$ Implementation and results (genus g)

(nría 🔤 🖤

Representation of the triangulation Implementation and results (Bolza) Dummy points for genus $g \ge 2$ Implementation and results (genus g)

loria 🔤 🛛

lordan lordanov

 Introduction
 Representation of the triangulation

 Background
 Implementation and results (Bolza)

 Delaunay triangulations of Mg Dummy points for genus $g \ge 2$

 Future directions
 Implementation and results (genus ,

Point Insertion Computations on translations (nría 🔤 🖤

lordan lordanov

Implementation and results (Bolza) Delaunay triangulations of M_g Future directions

Predicates

$$\textit{Orientation}(p,q,r) = \mathsf{sign} egin{bmatrix} p_x & p_y & 1 \ q_x & q_y & 1 \ r_x & r_y & 1 \end{bmatrix}$$

I.

$$InCircle(p, q, r, s) = sign \begin{vmatrix} p_{x} & p_{y} & p_{x}^{2} + p_{y}^{2} & 1 \\ q_{x} & q_{y} & q_{x}^{2} + q_{y}^{2} & 1 \\ r_{x} & r_{y} & r_{x}^{2} + r_{y}^{2} & 1 \\ s_{x} & s_{y} & s_{x}^{2} + s_{y}^{2} & 1 \end{vmatrix} \xrightarrow{s} p$$

Predicates

Suppose that the points in S are rational.

Input of the predicates can be their images under translations, e.g.,

$$\overline{b}: z \mapsto \frac{z \cdot \left(1 + \sqrt{2}\right) + e^{\frac{i\pi}{4}} \sqrt{2} \sqrt{1 + \sqrt{2}}}{z \cdot e^{-\frac{i\pi}{4}} \sqrt{2} \sqrt{1 + \sqrt{2}} + \left(1 + \sqrt{2}\right)}$$

Orientation: InCircle: 16 20 32 40 48 56 Degree Degree 64 72 28 42 13 57 140 21 # cases # cases 6

Point coordinates represented with CORE::Expr \rightarrow (filtered) exact evaluation of predicates

(nria los O man

Experiments

Fully dynamic implementation

- 1 million rational random points
 - C G A L Euclidean DT (double) ~ 1 sec.
 - GAL Euclidean DT (CORE::Expr)

 \sim 22 sec.

- Hyperbolic periodic DT (double)
- Hyperbolic periodic DT (CORE::Expr)

 ~ 13 sec.

 \sim 48 sec.

Experiments

Fully dynamic implementation

- 1 million rational random points
 - C G A L Euclidean DT (double) ~ 1 sec.
 - G G A L Euclidean DT (CORE::Expr)
 - Hyperbolic periodic DT (double) \sim 13 sec.
 - Hyperbolic periodic DT (CORE::Expr) ~ 48 sec.

Predicates

- 0.76% calls to predicates involve non-identity translations
- responsible for 36% of total time spent in predicates

No dummy points left after insertion of > 200 random points.

(nria lon O missie

 ~ 22 sec

Representation of the triangulation Implementation and results (Bolza) Dummy points for genus $g \ge 2$ Implementation and results (genus g)

Demo

- Implementation (open source) is available on Github: https://imiordanov.github.io/code/ To appear in CGAL v.4.14 (March 2019)
- YouTube video of CGAL demo shows hyperbolic free motion: https://tinyurl.com/bolza-free-motion
- We will see the live demo right now!

(nato - toro O mini

Representation of the triangulation Implementation and results (Bolza) Dummy points for genus $g \ge 2$ Implementation and results (genus g)

An initial set of dummy points

[EITV]

For \mathbb{M}_2 , a set of dummy points was given [BTV16]. In general?

lordan lordanov

Representation of the triangulation Implementation and results (Bolza) Dummy points for genus $g \ge 2$ Implementation and results (genus g)

An initial set of dummy points

[EITV]

For \mathbb{M}_2 , a set of dummy points was given [BTV16]. In general?

The idea is to generate dummy points:

- **1** Start with a set W_g for \mathbb{M}_g (called *Weierstrass points*) \rightarrow origin, one vertex, and midpoints of sides of the 4g-gon
- **2** Compute the images of these points in D_N
- **3** Compute their hyperbolic Delaunay triangulation in \mathbb{H}^2

Representation of the triangulation Implementation and results (Bolza) Dummy points for genus $g \ge 2$ Implementation and results (genus g)

An initial set of dummy points

[EITV]

For \mathbb{M}_2 , a set of dummy points was given [BTV16]. In general?

The idea is to generate dummy points:

- **1** Start with a set W_g for \mathbb{M}_g (called *Weierstrass points*) \rightarrow origin, one vertex, and midpoints of sides of the 4g-gon
- **2** Compute the images of these points in D_N
- 3 Compute their hyperbolic Delaunay triangulation in \mathbb{H}^2
- $sys(M_g) = 2 \operatorname{arcosh}\left(1 + 2 \cos\left(\frac{\pi}{2g}\right)\right)$ [Ebbens, 2018]
- triangulation of sets including W_g : contained in D_N

(nría 00 mar

Representation of the triangulation Implementation and results (Bolza) Dummy points for genus $g \ge 2$ Implementation and results (genus g)

Triangulations of Weierstrass points

Faces with a vertex in the polygon \rightarrow contained in D_N

Compute dummy points:

- 1. Get triangulation in D_N
- 2. Refine triangulation
- 3. Take points in 4g-gon

Representation of the triangulation Implementation and results (Bolza) Dummy points for genus $g \ge 2$ Implementation and results (genus g)

Sequential strategy

(nría 🔤 🖤

lordan lordanov

Representation of the triangulation Implementation and results (Bolza) Dummy points for genus $g \ge 2$ Implementation and results (genus g)

Sequential strategy

(nría 🔤 🖤

lordan lordanov

Representation of the triangulation Implementation and results (Bolza) Dummy points for genus $g \ge 2$ Implementation and results (genus g)

Sequential strategy

(nría 🔤 🖤

lordan lordanov

Representation of the triangulation Implementation and results (Bolza) Dummy points for genus $g \ge 2$ Implementation and results (genus g)

Sequential strategy

(nría 🔤 🖤

lordan lordanov

Representation of the triangulation Implementation and results (Bolza) Dummy points for genus $g \ge 2$ Implementation and results (genus g)

Sequential strategy

(nría 🔤 🖤

lordan lordanov

Representation of the triangulation Implementation and results (Bolza) Dummy points for genus $g \ge 2$ Implementation and results (genus g)

Sequential strategy

lordan lordanov

Representation of the triangulation Implementation and results (Bolza) Dummy points for genus $g \ge 2$ Implementation and results (genus g)

Sequential strategy with symmetries

Corta to O mar

lordan lordanov

Representation of the triangulation Implementation and results (Bolza) Dummy points for genus $g \ge 2$ Implementation and results (genus g)

Sequential strategy with symmetries

(nría 🖤 🛛

lordan lordanov

Representation of the triangulation Implementation and results (Bolza) Dummy points for genus $g \ge 2$ Implementation and results (genus g)

Sequential strategy with symmetries

lordan lordanov

 Introduction
 Representation of the triangulation

 Background
 Implementation and results (Bolza)

 Delaunay triangulations of M_g Dummy points for genus $g \ge 2$

 Future directions
 Implementation and results (genus g)

Implementation

- Preliminary code on Github, but not public
- What is implemented:
 - generation of dummy points (first two strategies)
 - initialization of periodic triangulation
 - location, insertion, removal: as for Bolza

Inta 0 million

Implementation

- Preliminary code on Github, but **not** public
- What is implemented:
 - generation of dummy points (first two strategies)
 - initialization of periodic triangulation
 - location, insertion, removal: as for Bolza
- Problems in practice
 - Recall: exact predicates; now with more complex expressions!
 - Comparison of two numbers: non-conclusive! (even for g = 3)
 - Idea: use limited accuracy, validate a posteriori
 - obtained preliminary results for g = 3
 - up to 2048 \times g bits: CORE crashes for g > 3 (generating Q_g)

(nria los O man

Representation of the triangulation Implementation and results (Bolza) Dummy points for genus $g \ge 2$ Implementation and results (genus g)

Experimental results

sequential

(nria 00 million

Representation of the triangulation Implementation and results (Bolza) Dummy points for genus $g \ge 2$ Implementation and results (genus g)

Experimental results

sequential w/ symmetries

(nato - toro O mini

Representation of the triangulation Implementation and results (Bolza) Dummy points for genus $g \ge 2$ Implementation and results (genus g)

Experimental results

insertion/removal

(nria 00 million

lordan lordanov

Triply Periodic Minimal Surfaces (TPMS)

lordan lordanov

Delaunay triangulations of symmetric hyperbolic surfaces in practice

69 / 70

Triply Periodic Minimal Surfaces (TPMS)

[Evans et al., 2013]

lordan lordanov

Why this topic? Delaunay triangulations CGAL State of the art

Example of hyperbolic surface: gyroid

[Evans et al., 2013]

[Schröder-Turk et al., 2017]

lordan lordanov