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Most symmetric surface of genus 2: Bolza

(a)

(b) 5 segments (c) 50 segments

(d) 200 segments (e) 500 segments

Fig. 13. The regular octagon with opposite sides identified is the fundamental domain of a compact surface of constant negative curvature with
genus 2. These figures show the trajectories of a particular point starting from the origin of the Poincaré discwith an angular deviationof iO~from
a closed periodic trajectory. Figure (a) shows the trajectory running through the tessellation; fig. (b) shows the trajectory through the first five
domains broken into five segments and plotted in the fundamental domain; figs. (c), (d) and (e) show the evolution through 50, 200, 500 segments.
(The seeming concentration of the trajectories at the corners disappears ifwe measure the areas in the correct non-Euclidean metric, since the
seeming size of a patch also decreases as we shift the patch toward the boundary.)

136

[Balazs, Voros ’86] [Sausset, Tarjus, Viot ’08]

6.4. Computation of hyperbolic planforms 103

(a) �1 : G, the corresponding eigenvalue
is � = 23.0790.

(b) �2 : G0�, the corresponding eigen-
value is � = 91.4865.

(c) �3 : G0�� , the corresponding eigen-
value is � = 32.6757.

(d) �4 : G, the corresponding eigenvalue
is � = 222.5434.

Figure 6.7: The four H-planforms with their corresponding eigenvalue associated
with the four irreducible representations of dimension 1, see text.

[Chossat, Faye, Faugeras ’11]
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The Computational Geometry Algorithms Library

CGAL project: founded in 1996
CGAL library: open source since 2003
Today:

open-source library for CG
over 100 packages (triangulation, mesh, arrangements...)
used in GIS, CAD, medical imaging, robotics...

Our goal:

implement triangulations of hyperbolic surfaces in CGAL
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State of the art

State of the art

Closed Euclidean manifolds
Algorithms

2D [Mazón, Recio ’97]
3D [Dolbilin, Huson ’97]
dD [Caroli, Teillaud ’16]

Software (square/cubic flat torus)
2D [Kruithof ’13]
3D [Caroli, Teillaud ’09]

Closed hyperbolic manifolds
Algorithms

2D, genus 2 [Bogdanov, Teillaud, Vegter, SoCG’16]
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The square flat torus and the Bolza surface

Euclidean: translation group

�1 =
e
a, b

-- abab =
f

Flat torus: M1 = E
2/�1

with projection map fi1 : E2
æ M1

Hyperbolic: Fuchsian group

�2 =
e
a, b, c, d | abcdabcd =

f

Bolza surface: M2 = H
2/�2

with projection map fi2 : H2
æ M2
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Symmetric hyperbolic surfaces of genus g Ø 2

Let �g : Fuchsian group with finite presentation similar to Bolza
æ 2g generators, single relation

Symmetric hyperbolic surface: Mg = H
2/�g , g Ø 2

with natural projection mapping fig : H2
æ Mg
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g = 2 g = 3 g = 4 g = 5
angle sum = 2fi for all 4g-gons!
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aa

b
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d

Fundamental domain Dg = Dirichlet region of O for �g
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angle sum = 2fi

here for g = 2
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S set of points in Dg
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Delaunay triangulation in H
2

DTH(�gS)
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Delaunay triangulation of Mg
DTMg (S)
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æ not necessarily a simplicial complex!

double edges

double edges
and/or loops
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projection of DTH(�gS) on the surface Mg

æ not necessarily a simplicial complex!

Systole of a surface = minimum length of a
non-contractible loop on the surface



Introduction
Background

Delaunay triangulations of Mg
Future directions

Closed orientable surfaces
The hyperbolic plane
Symmetric hyperbolic surfaces
From theory to practice

Validity condition [BTV16]

”S <
1
2sys(Mg), where

DTMg (S) := fig (DTH(�gS))
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projection of DTH(�gS) on the surface Mg

æ is a simplicial complex, if

”S = diameter of largest disks in H
2

not containing any point of �gS



Introduction
Background

Delaunay triangulations of Mg
Future directions

Closed orientable surfaces
The hyperbolic plane
Symmetric hyperbolic surfaces
From theory to practice

Computing Delaunay triangulations of Mg

Use set of dummy points Qg that satisfies the validity condition:

S := Qg
€

P =∆ ”S <
1
2sys(Mg) always

Algorithm for Delaunay triangulations of Mg [BTV16]

1 initialize DTMg with a set of dummy points Qg
2 insert input points P in the triangulation
3 remove points of Qg from the triangulation, if possible

æ condition preserved with insertion of new points
æ final triangulation might contain dummy points
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Representation of the triangulation
Implementation and results (Bolza)
Dummy points for genus g Ø 2
Implementation and results (genus g)

Problem statement

To compute DTMg (S), we need to choose what to store.

Requirement: all input points lie in Dg
æ unique representative in Dg µ H

2 for each point on Mg

Question: How to choose a unique representative for each face?
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Inclusion property

Let S µ Dg be a point set such
that

”S < 1
2 sys(Mg).

Let ‡ be a face of DTH(�gS)
with at least one vertex in Dg

∆ ‡ is contained in DN

Proof:
for g = 2 æ [IT, SoCG ’17]

for g Ø 2 æ [EITV]
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Canonical representatives of faces

Canonical representative: face
with at least one vertex in Dg
æ other vertices will be in DN

To make it unique:
æ choose the face closest to
the “first” Dirichlet neighbor
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triangulation data structure

⌫1v1p1
p2

p0

⌫0v0

, ⌫2v2

f
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Canonical representatives can cross the boundary

pq

r

a(p) a(q)

a(r)
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extended triangulation data structure

a(p)
q

r

⌫0 = 1

⌫2
= a

⌫1 = a q

r

p
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Predicates

Orientation(p, q, r) = sign

-------

px py 1
qx qy 1
rx ry 1

-------

InCircle(p, q, r , s) = sign

---------

px py p
2
x + p

2
y 1

qx qy q
2
x + q

2
y 1

rx ry r
2
x + r

2
y 1

sx sy s
2
x + s

2
y 1

---------
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Predicates

Suppose that the points in S are rational.

Input of the predicates can be their images under translations, e.g.,

b : z ‘æ

z ·

1
1 +

Ô
2
2

+ e
ifi
4

Ô
2
Ò

1 +
Ô

2

z · e
≠ ifi

4
Ô

2
Ò

1 +
Ô

2 +
1
1 +

Ô
2
2 .

Orientation:

Degree 16 20
# cases 28 42

InCircle:

Degree 32 40 48 56 64 72
# cases 13 57 140 21 6 1

Point coordinates represented with CORE::Expr

æ (filtered) exact evaluation of predicates
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Implementation and results (Bolza)
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Implementation and results (genus g)

Experiments

Fully dynamic implementation

1 million rational random points
Euclidean DT (double) ≥ 1 sec.
Euclidean DT (CORE::Expr) ≥ 22 sec.

Hyperbolic periodic DT (double) ≥ 13 sec.
Hyperbolic periodic DT (CORE::Expr) ≥ 48 sec.

Predicates
0.76% calls to predicates involve non-identity translations
responsible for 36% of total time spent in predicates

No dummy points left after insertion of > 200 random points.
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Demo

Implementation (open source) is available on Github:
https://imiordanov.github.io/code/

To appear in CGAL v.4.14 (March 2019)
YouTube video of CGAL demo shows hyperbolic free motion:

https://tinyurl.com/bolza-free-motion

We will see the live demo right now!
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An initial set of dummy points [EITV]

For M2, a set of dummy points was given [BTV16]. In general?

The idea is to generate dummy points:
1 Start with a set Wg for Mg (called Weierstrass points)

æ origin, one vertex, and midpoints of sides of the 4g-gon
2 Compute the images of these points in DN

3 Compute their hyperbolic Delaunay triangulation in H
2

4 Apply Delaunay refinements to satisfy condition Ω strategies!

sys(Mg) = 2 arcosh
1
1 + 2 cos

1
fi
2g

22
[Ebbens, 2018]

triangulation of sets including Wg : contained in DN
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1. Get triangulation in DN

2. Refine triangulation
3. Take points in 4g-gon

Faces with a vertex in the polygon
æ contained in DN
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Implementation

Preliminary code on Github, but not public
What is implemented:

generation of dummy points (first two strategies)
initialization of periodic triangulation
location, insertion, removal: as for Bolza

Problems in practice
Recall: exact predicates; now with more complex expressions!
Comparison of two numbers: non-conclusive! (even for g = 3)
Idea: use limited accuracy, validate a posteriori

obtained preliminary results for g = 3
up to 2048 ◊ g bits: CORE crashes for g > 3 (generating Qg )
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