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Introduction Why this topic?
Delaunay triangulations

CGAL
State of the art

What is a Delaunay triangulation?
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Introduction

The Computational Geometry Algorithms Library € & A [

m CGAL project: founded in 1996

m CGAL library: open source since 2003
m Today:

m open-source library for CG
m over 100 packages (triangulation, mesh, arrangements...)
m used in GIS, CAD, medical imaging, robotics...

Our goal:

implement triangulations of hyperbolic surfaces in CGAL
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Introduction

ngulations

State of the art

State of the art

Closed Euclidean manifolds
m Algorithms
m 2D [Mazén, Recio '97]
m 3D [Dolbilin, Huson '97]
m dD [Caroli, Teillaud '16]

m Software (square/cubic flat torus)
m 2D [Kruithof '13] A
= 3D [Caroli, Teillaud '09] C G A
Closed hyperbolic manifolds

m Algorithms
m 2D, genus 2 [Bogdanov, Teillaud, Vegter, SoCG'16]
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Closed orientable surfaces
Background The hyperbolic plane

Symmetric hyperbolic sur
From theory to practice

Cutting open a flat torus
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Closed orientable surfaces
Background The hyperbolic plane

Symmetric hyperbolic surfe
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Cutting open a double torus
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Closed orientable surfaces

Background The hyperbolic plane

Symmetric hyperbolic surfe
From theory to practice

Poincaré model of the hyperbolic plane H?

lordan lordanov Delaunay triangulations of symmetric erbolic surfaces in practice 26 / 70



Closed orientable surfaces

Background The hyperbolic plane

Symmetric hyperbolic surfe
From theory to practice

Hyperbolic translations

Special case: axis = diameter
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Closed orientable surfa

Background The hyperbolic plane

Symmetric hyperbolic surfaces
From theory to practice

Hyperbolic translations

Side-pairing transformation
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Closed orientable surfaces

Background The hyperbolic plane

Symmetric hyperbolic surfac
From theory to practice

Hyperbolic translations

Non-commutative!

Compare with Euclidean:
°
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From theory to practice
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Background

erbolic surfaces
From theory to practice

The square flat torus and the Bolza surface

°b

Euclidean: translation group
0 . F1:<a,b|abégz]l>

Flat torus: My = E2/I;
ob with projection map 71 : E? — M

Hyperbolic: Fuchsian group

M= <a, b,c,d | abcdabed = 1 >

Bolza surface: M = H? /I,
with projection map mp : H? — M,

VA7 @
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Closed orientabl
Background The hyperbolic

Symmetric hyperbolic surfaces
From theory to practice

The square flat torus and the Bolza surface

;/)

U1

° < .
a

U3

Vo

Euclidean: translation group
M= (ablabab=1)

Flat torus: My = E?/T';

with projection map 71 : E? — M

Hyperbolic: Fuchsian group

M= <a, b,c,d | abcdabed =

Bolza surface: M = H? /I,

1)

with projection map mp : H? — M,

lordan lordanov
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Background

g=2
angle sum = 27 for all 4g-gons!

Let [',: Fuchsian group with finite presentation similar to Bolza
— 2g generators, single relation

Symmetric hyperbolic surface: VI, = [1?/I , g>2

with natural projection mapping 7, : % — M,
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Closed orientable surfaces
Background The hyperbolic plane

Symmetric hyperbolic surfaces
From theory to practice

Dirichlet regions

LN A T g

Voronoi diagram of ', O for g = 2
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Closed orientable o
Background The hyperbolic plane

Symmetric hyperbolic surfaces
From theory to practice

Dirichlet regions

angle sum = 27

Fundamental domain D, = Dirichlet region of O for ',
here for g = 2

VA7 @
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Closed orientable surfaces
Background The hyperbolic plane

Symmetric hyperbolic surfac
From theory to practice

Delaunay triangulation

S set of points in D,

lordan lordanov Delaunay triangulations of symmetric erbolic surfaces in practice 36 / 70



Closed orientabl
Background The hyperboli

Symmetric hyperbolic surfaces
From theory to practice

Delaunay triangulation

orbits ;S in H?2
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Closed orientable
Background The hyperbolic pl

Symmetric hyperbolic surfaces
From theory to practice

Delaunay triangulation

Delaunay triangulation in H?
DTw(T,S)
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Closed orientable surfaces
Background The hyperbolic plane

Symmetric hyperbolic surfac
From theory to practice

Delaunay triangulation

Delaunay triangulation of M,
DTy, (S)
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Closed orientable surfaces
Background The hyperbolic plane

Symmetric hyperbolic surfaces
From theory to practice

Delaunay triangulation
projection of DTy (IzS) on the surface M,

— not necessarily a simplicial complex!

— double edges

——» double edges
and/or loops
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Closed orientable surfaces
Background The hyperbolic plane

Symmetric hyperbolic surfaces
From theory to practice

Validity condition [BTV16]
projection of DTy (IzS) on the surface M,

‘ — not necessarily a simplicial complex!

Systole of a surface = minimum length of a
non-contractible loop on the surface
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Closed orientab

Background ,
Sy tric hyp S
From theory to practice

Validity condition [BTV16]
projection of DTy (IzS) on the surface M,

— is a simplicial complex, if

Q

1
ds < §sys(Mg), where

ds = diameter of largest disks in H?
not containing any point of ;S

DTy, (S) := mg(DTi(T,S))
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Closed orientable surfaces
Background The hyperbolic plane

Symmetric hyperbolic surfaces
From theory to practice

Computing Delaunay triangulations of M,

Use set of dummy points (), that satisfies the validity condition:

. 1
S:= QgU P=ds < ésys(Mg) always
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Background

Computing Delaunay triangulations of M,

Use set of dummy points (), that satisfies the validity condition:

S = QgU P—=ds < %sys(Mg) always

Algorithm for Delaunay triangulations of M,

[BTV16]

initialize DTMg with a set of dummy points @,
insert input points P in the triangulation

remove points of (), from the triangulation, if possible

— condition preserved with insertion of new points
— final triangulation might contain dummy points

lordan lordanov
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Representation of the triangulation
Implementation and results (Bolza)

Delaunay triangulations of Mg Dummy points for genus g

Implementation and results (

Problem statement

To compute DTy, (S), we need to choose what to store.

Requirement: all input points lie in Dy
— unique representative in Dy C H? for each point on M,

Question: How to choose a unique representative for each face?
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Representation of the triangulation
Implementation and results )

Delaunay triangulations of Mg Dummy ts for genus g
Implementa

Inclusion property

Let S C Dg be a point set such
that
bs < 3 sys(Mg).

Let o be a face of DTy (I, S)
with at least one vertex in Dg
= o is contained in Dy

Proof:
mforg=2 — [IT, SoCG ’17]
mforg>2 — [EITV]
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Representation of the triangulation
Implementation and results (Bolza)

Delaunay triangulations of Mg Dummy points for genus
Implementation and results

Canonical representatives of faces

Canonical representative: face
with at least one vertex in Dg
— other vertices will be in Dy
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Representation of the triangulation
Implementation and results (Bolza)
5

Delaunay triangulations of Mg Dummy points for genus g
Implementation and results (ge

Canonical representatives of faces

Canonical representative: face
with at least one vertex in Dg
— other vertices will be in Dy

To make it unique:
— choose the face “closest” to
the first Dirichlet neighbor
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Representation of the triangulation
Implementation and results (Bolza)
Delaunay triangulations of Mg Dummy points for p
Implementation and

. 2

Vo
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Representation of the triangulation

Implementation and results (Bolza)
Delaunay triangulations of Mg Dummy points for genu: > 2

Implementation and results
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Implementation and results (Bolza)
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Implementation and results
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Delaunay triangulations of Mg Dummy points for genus g > 2

Implementation and ults (genus g)

Point Location

A R
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Representation of the triangulation
Implementation and results (Bolza)

Delaunay triangulations of Mg Dummy points for genus g > 2
Implementation and results (ge

Point Insertion

recall:
“hole” = topological disk
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Representation of the triangulation
Implementation and results (Bolza)

Delaunay triangulations of Mg Dummy poin

Point Insertion

Computations
on translations
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Representation of the triangulation
Implementation and results (Bolza)

Delaunay triangulations of Mg Dummy points for genus
Implementation and results

Predicates

pPx py 1
Orientation(p, q,r) =sign|gx q, 1
rk r, 1

Px Py P2 P

2 2

, - lax 9y di+q
InCircl =

nCircle(p, q, r,s) = sign ror rf—i—ré

Sx Sy 534—55

e
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triangulation

2)

Delaunay triangulations of Mg

Predicates

Suppose that the points in S are rational.

Input of the predicates can be their images under translations, e.g.,

z-(l+\@>+e%\@\/1+\/§
2 e Va1 V2t (14v2)

Orientation: InCircle:
Degree | 16 | 20 |  Degree |32 | 40 | 48 |56 | 64 | 72
#cases‘28‘42‘ #cases‘13‘57‘140‘21‘ 6

b:z—

Point coordinates represented with CORE: : Expr
— (filtered) exact evaluation of predicates
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Repr tation of the triangulation
Implementation and results (Bolza)

Delaunay triangulations of Mg Dummy points for genus g
Implementation and results (ge

Experiments
Fully dynamic implementation

1 m|II|on ratlonal random points

" Euclidean DT (double) ~ 1 sec.
.| Euclidean DT (CORE::Expr) ~ 22 sec.
[ Hyperbollc periodic DT (double) ~ 13 sec.
m Hyperbolic periodic DT (CORE::Expr) ~ 48 sec.
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Representation of the triangulation
Implementation and results (Bolza)

Delaunay triangulations of Mg Dummy points for genus
Implementation and results

Experiments
Fully dynamic implementation

1 million rational random points

/A Euclidean DT (double) ~ 1 sec.

/AL Euclidean DT (CORE::Expr) ~ 22 sec.

[ Hyperbollc periodic DT (double) ~ 13 sec.

m Hyperbolic periodic DT (CORE::Expr) ~ 48 sec.
Predicates

m 0.76% calls to predicates involve non-identity translations

m responsible for 36% of total time spent in predicates

No dummy points left after insertion of > 200 random points.
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Repr tation of the triangulation
Implementation and result

Delaunay triangulations of Mg Dummy points for genus g
Implementation and results (

Demo

m Implementation (open source) is available on Github:
https://imiordanov.github.io/code/
To appear in CGAL v.4.14 (March 2019)

m YouTube video of CGAL demo shows hyperbolic free motion:
https://tinyurl.com/bolza-free-motion

m We will see the live demo right now!
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Representation of the triangulation
Implementation and results (Bolza)

Delaunay triangulations of Mg Dummy points for genus g > 2
Implementation and results (genus g)

An initial set of dummy points [EITV]

For My, a set of dummy points was given [BTV16]. In general?
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Representation of the triangulation
Implementation and results (Bolza)

Delaunay triangulations of Mg Dummy points for genus g > 2
Implementation and results (genus g)

An initial set of dummy points [EITV]

For My, a set of dummy points was given [BTV16]. In general?

The idea is to generate dummy points:

Start with a set W, for M (called Weierstrass points)
—> origin, one vertex, and midpoints of sides of the 4g-gon

Compute the images of these points in Dy
Compute their hyperbolic Delaunay triangulation in H?
Apply Delaunay refinements to satisfy condition <+ strategies!

58 / 70
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Representation of the triangulation
Implementation and results (Bolza)

Delaunay triangulations of Mg Dummy points for genus g > 2
Implementation and results (genus g)

An initial set of dummy points [EITV]

For My, a set of dummy points was given [BTV16]. In general?

The idea is to generate dummy points:

Start with a set W, for M (called Weierstrass points)
—> origin, one vertex, and midpoints of sides of the 4g-gon

Compute the images of these points in Dy
Compute their hyperbolic Delaunay triangulation in H?
Apply Delaunay refinements to satisfy condition <+ strategies!

m sys(My) =2 arcosh(l + 2cos<i>> [Ebbens, 2018]

m triangulation of sets including W;: contained in Dy
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Representation of the triangulation

Implementation and results (Bolza)
Delaunay triangulations of Mg Dummy points for genus g > 2

Implementation and results

Faces with a vertex in the polygon
— contained in Dy
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Faces with a vertex in the polygon
— contained in Dy

Compute dummy points:
1. Get triangulation in Dy,
2. Refine triangulation
3. Take points in 4g-gon
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Implementation and results (Bolza)

Delaunay triangulations of Mg Dummy points for genus g > 2
Implementation and results (genu

Sequential strategy
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Delaunay triangulations of Mg Dummy points for genus g >
Implementation and results (g

Sequential strategy

e
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set size O(g)
[EITV]

V257 = @t
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Delaunay triangulations of Mg Dummy points for genus g >
Implementation and results (g

lordan lordanov Delaunay triangulations of symmetric hyperbolic surfaces in practice



ntation of the triangulation
Implementation and results (Bolza)
Delaunay triangulations of Mg Dummy points for genus g > 2
Implementation and results

< 7 ‘ D

S
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Representation of the triangulation
Implementation and results (Bolza)

Delaunay triangulations of Mg Dummy points for genus g > 2

Implementation and results (genus g)

Implementation

m Preliminary code on Github, but not public
m What is implemented:

m generation of dummy points (first two strategies)
m initialization of periodic triangulation
m location, insertion, removal: as for Bolza
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ntation of the triangulation

Implementation and results (Bolza)
. 2

Delaunay triangulations of Mg Dummy points for genus g > 2
Implementation and results (genus g)

Implementation

m Preliminary code on Github, but not public
m What is implemented:

m generation of dummy points (first two strategies)
m initialization of periodic triangulation
m location, insertion, removal: as for Bolza

m Problems in practice

m Recall: exact predicates; now with more complex expressions!
m Comparison of two numbers: non-conclusive! (even for g = 3)
m Idea: use limited accuracy, validate a posteriori

B obtained preliminary results for g = 3

B up to 2048 X g bits: CORE crashes for g > 3 (generating Q)
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sequential

22 pts.







insertion /removal

Experimental results
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Future directions

Triply Periodic Minimal Surfaces (TPMS)

[Evans et al., 2013]
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Future directions

Triply Periodic Minimal Surfaces (TPMS)

[Evans et al., 2013

V257 = @t
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Introduction Why this topic?

Example of hyperbolic surface: gyroid
Evans et al., 2013]

N
p 1
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