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Motivation: Measuring Similarity Between Curves

How can we tell when two cycles or curves are similar to each
other?
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Recall: Homotopy

Definition

A homotopy is a continuous deformation of one path to another.
More formally, a homotopy between two curves α and β on a
surface M is a continuous function H : [0, 1]× [0, 1]→ M such
that H(·, 0) = α(·) and H(·, 1) = β(·).
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Recall: Homotopic Fréchet Distance

Homotopic Fréchet distance generalizes the Fréchet distance, but
adds the constraint that the curves must be homotopic, and the
leashes must move continuously in the ambient space.
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(We could just have really called this the width of the homotopy.)
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Homotopic Fréchet Distance

The homotopic Fréchet distance is the length of the shortest leash
we can can use for our homotopy. Formally,

dF (γ1, γ2) = inf
homotopies H

{sup{|H(·, t))| | t ∈ [0, 1]}}

Yesterday, we saw a polynomial algorithm to solve this in the plane
(minus obstacles).
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The homotopic Fréchet distance is the length of the shortest leash
we can can use for our homotopy. Formally,

dF (γ1, γ2) = inf
homotopies H

{sup{|H(·, t))| | t ∈ [0, 1]}}

Yesterday, we saw a polynomial algorithm to solve this in the plane
(minus obstacles).

Erin Chambers Computing Optimal Homotopies



Homotopic Fréchet Distance
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Isotopy

Definition

An isotopy is a homotopy H such that for each fixed time t,
H(x , t) is a homeomorphism.

A homeomorphism is a function which is a continuous bijection
where the inverse is also continuous. In our setting, this will mean
that every intermediate curve in the homotopy must also have an
image that is simple.
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Isotopic Fréchet Distance

In [C.-Ju-Letscher 2009], we introduced the idea of isotopic
Fréchet distance:

I(A,B) = inf
h : M × I → M

h(·, t) homeomorphism
h(x , 0) = x ∀x ∈ X

h(A, 1) = B

maxx∈X lenh(x , ·)

In other words, what’s the longest trajectory in an ambient isotopy?

Note the difference with homotopy height: there, the intermediate
curves stayed simple, but here, we want the leashes to form an
isotopy as well.
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Isotopic Fréchet Distance

If A and B are not ambiently isotopic then I(A,B) =∞.
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Homotopic versus Isotopic Fréchet Distance

Proposition For any L > 0 and ε ∈ (0, L/2) there exists a pair of
curves C1,C2 ∈ R2 with

F(C1,C2) = H(C1,C2) = ε

I(C1,C2) ≥ 2

9
L
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The best homotopy versus an isotopy

Homotopy:

Isotopy?:
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The best homotopy versus an isotopy

Actually, the best isotopy is even more complicated! The prior
picture gave a distance of

√
L2 + ε2. This was off by a factor of

roughly 2 [Buchin-C.-Ophelders-Speckmann 2017]:

ε

L
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An easy case: monotone curves

I have no idea how to compute monotone Fréchet isotopies (with
no obstacles at all), or even any upper bound on the number of
“bends” in the longest leash in an optimal one.

Motives the question: when do isotopies with no bends exist?

Theorem

If the curves A and B are x-monotone, then the isotopic Fréchet
distance is equal to the Fréchet distance.

Sketch: Since the curves are x-monotone, a natural choice of
optimal Fréchet leashes (where each is a shortest path),
parameterized along the leash as (1− s)A(t) + sB(t) for s ∈ [0, 1],
will trace an ambient isotopy.
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Another restricted case

Consider “horizontally short” isotopies to a monotone curve:
ignore the y -coordinate, so input curve lies in a small region
IR× [0, ε] for some small ε.

Not so easy even in this simple setting...
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Horizontal Fréchet isotopies

We (in full version of EuroCG paper) can compute optimal isotopic
Fréchet to monotone curves, if you only consider the horizontal
length of the leash.

Key idea of algorithm: move local minima up and local maxima
down, until you can cancel a pair:

0 1
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Area of a homotopy

Recall that instead of focusing on the length or width, we can also
examine the total area swept by a homotopy or homology.

ß
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Computing homotopy area

Surprisingly, this measure is much more tractable than any other
measure based on homotopy, even for non-disjoint curves.

α

ß
α

ß

We’ll start in the plane, and
then generalize to surfaces...
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Definition: Homotopy area

More formally, given a homotopy H, the area of H is defined as:

Area(H) =

∫
s∈[0,1]

∫
t∈[0,1]

∣∣∣∣dHds × dH

dt

∣∣∣∣ dsdt

We are then interested in the smallest such value: infH Area(H).

Note that in generally, this is an improper integral, and the value
for any H is not necessarily even finite.
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Douglas and Rado’s work

Douglas and Rado (1930’s) were the first to consider this problem,
as a variant of Plateau’s problem (1847) dealing with soap bubbles
and minimal surfaces.

[Minimal sub manifolds and related topics, Y. L. Xin]
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Realizing the minimum area

There is an additional problem in that to find the infimum, we
might have a pathological case where a sequence of good H’s
converge to something that is not even continuous.

[Lectures on Minimal Submanifolds, H. B. Lawson]
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Douglas’ theorem

They developed a restricted version using Dirichlet integrals (or
energy integrals) which allow control over the parameterizations of
the minimal surfaces. These integrals not only minimize area, but
also ensure (almost) conformal parameterizations in the space.

Theorem

Let γ be a finite Jordan curve in Rn. Then there exists a
continuous map Γ :

{
(x , y) ∈ R2 : x2 + y2 ≤ 1

}
→ Rn such that:

1 Γ maps the boundary of the disk monontically onto γ.

2 Γ is harmonic and almost conformal

3 Γ realizes the infimum of all areas

(Well, I’m hiding a few details about the Dirichlet integrals here...)
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Necessary assumptions

In [C-Wang 2013], we consider a much simpler setting - we are
either in R2 or a piecewise linear surface. However, we do need
some assumptions in order for the minimum area homotopy to
exist.

We must assume that H is continuous and piecewise
differentiable (so it is differentiable everywhere except at a
finite set of points and arcs).

We also assume the homotopy is monotone along the
boundary of the domain and is regular on the interior
(meaning intermediate curves are “kink-free”).

Finally, we will assume our input curves (on M) are simple
and have a finite number of piecewise analytic components.
(In practice, they will simply be PL curves.)
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Algorithm in the plane

In the plane, we consider the decomposition of the plane given by
the union of the two curves.

P

Q

(I’m drawing continuous curves here for simplicity, but think of
these as PL when we get to the running time.)
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Anchor points

Note that any vertex of intersection could either be fixed
throughout the homotopy (we call this an anchor point) or could
be moved by the homotopy.

P

Q

P

Q

s

t

q1 q2 q3

p3p2

p1

We prove that the ordering of the anchor points along the two
curves P and Q will be the identical, and in between anchor points,
we prove that the homotopy will always move locally forward.
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Winding numbers

The winding number of a closed curve γ with respect to a point x ,
wn(x ; γ) is the number of times that curve travels
counterclockwise around the point.

1

−1

0
0

0 −1

−2

−1

−1

0
0
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Using the winding number

Lemma

Any homotopy with no anchor points will have consistent winding
numbers (all non-negative or all non-positive).

1

−1

0
0

0 −1

−2

−1

−1

0
0
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Calculating with no anchor points

Lemma

If P ◦ Q has consistent winding numbers, then:

inf
H

Area(H) =

∫
R2

|wn(x ;P ◦ Q)|dx

−1

−2

−1

−1

0
0
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The algorithm: dynamic programming

Our algorithm now proceeds quite simply.

We can compute the winding number of each planar region. If
all are non-positive or non-negative, then we simply sum the
areas of each region with multiplicity given by the winding
number.

If the numbers are not consistent, then we know there is at
least one anchor point. Since the order of the anchor points
along each curve is the same, we can enumerate all the
possible sets of anchor points, and in between the anchor
points compute the winding numbers again.
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Running time in the plane

Let I be the number of intersections and n be the complexity of
the input curves.

We give an algorithm that can be implemented in O(I 2n) time
using dynamic programming, which simply builds up the sets of
anchor points iteratively and uses previous solutions to speed up
future computation.

However, this can be improved to O(I 2 log I ) time with
O(I log I + n) preprocessing if we are more careful about how we
compute the winding numbers.
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Homotopy area on a surface

Our paper [C.-Wang] also considers the algorithm for surfaces,
which builds upon the planar algorithm.

ß
α

α ß

Consider two homotopic curves on a triangulated surface M with
positive genus.
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The universal cover

Let U(M) be the universal covering space of M. This is a simply
connected (i.e. planar) domain, along with an associated map
φ : U(M)→ M which is continuous, surjective, and a local
homeomorphism.

a

b

(0, 0)

(0,−1)

(0,−2)(−1,−2)

(−1,−1)

(−1, 0)

(−1, 1) (0, 1) (1, 1)

(1, 0)

(1,−1)

(1,−2)

a

b

a

b

(−2, 2) (2, 2)

(2,−2)(−2,−2)
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Lifting P and Q

If we fix a lift for the endpoints of P and Q in the universal cover
U(M), then P ◦ Q lifts to a unique closed curve in U(M).
Therefore, any homotopy between P and Q on M will correspond
to a homotopy between their lifts in U(M) with the same area.

P̃P

Q̃
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Homotopy area on surfaces

We construct a portion of the universal cover which contains the
lifts of P and Q as well as the regions inside their concatenation.

We then use our planar algorithm in
U(M), since similar results about the
winding number will hold. Since we
can simplify much of the interior of
the regions in our representation, the
total running time here is
O(gK logK + I 2 log I + In).

P̃P

Q̃

R1

R2

R3
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Open question: cycles on surfaces

We don’t know how to compute homotopy area for cycles on
surfaces, however:
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More recent algorithms for homotopy area

In our paper, we require the two input curves to be simple
(although they can intersect each other), and the homotopy must
be regular. There has been more recent work to compute the best
area homotopy that contracts an arbitrary curve to a point.

This can be used to compute similarity of two non-simple loops as
well: simply concatenate the two curves (perhaps by adding
connecting curve).
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First approach

Nie 2014 considers the weighted cancellation norm, and shows that
the word problem in this setting can be solved in polynomial time
via dynamic programming:

He then builds the fundamental group from the plane minus the
curve, and weights each generator by the area of that cycle. Since
this gives a weighted cancellation norm and distance, the optimal
area homotopy can be calculated.
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Second approach

Fasy-Karakoc-Wenk 2016 consider a different approach which is
more geometric: They consider self-overlapping curves - curves
that are the boundary of an immersed disk - and show that they
can do the same winding number calculation to find optimal area
homotopies.

Self overlapping curves were
considered previously
[Shor-Van Wyk 1992], who
gave a polynomial time
algorithm to recognize them.
(Exactly O(n3) assuming
generic point intersections.)

Shor-Van Wyk
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Second approach (cont)

For non-self-overlapping curves, they show that a minimum area
homotopy can be obtained by contracting a sequence of
self-overlapping subcurves, each based at intersection points of the
curve:

Fasy-Selcuk-Wenk 2017

Final running time is exponential, although they are working on
dynamic programming techniques to speed this up.

They also have a working implementation of their approach!
(Demo time...)
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Using homology?

Homology is a coarser invariant than homotopy - all
homotopies produce homologies, but not all homologies come
from homotopies.
In general, much more tractable - reduces to a linear algebra
problem, and software is widely available and highly optimized.
Potentially much wider applications: works in arbitrary
dimensions.
However, MUCH less intuitive or clear what you are
measuring, and not as connected to flow!
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Defining homology

Let me take a minute to actually define it more formally:

Definition

Given any simplicial complex, the set of k-chains is just the vector
space of linear combinations of k-simplices, with coefficients from
some group or field.

Coefficients in this vector space can be from any group or field. So
k-chains are just formal sums of simplices, which form a linear
algebra structure.

(Computer scientists are usually comfortable with this, since a
1-chain is just a walk in a graph.)
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K-chains: an example

Triangulation of a 2-manifold: If we use F2 coefficients on a
2-complex, we get sums of edges, where repeated edges cancel.

So the set of 1-chains with coefficients from F2 on a surface are
the same as the set of even subgraphs.
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Boundary maps

The boundary map δk on k-chains
simply takes any simplex to the sum
of the (k − 1)-chains that bound it.

If coefficients are from F2 then there
is no real idea of direction or
orientation: an edge is either present
or it is not.

Ghrist 2014
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More boundary maps

If linear combinations don’t come from F2 then things get a bit
more complex:

Still - at its heart, this is just linear algebra! (Plus something like
the right hand rule, if you remember physics.)
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Boundaries on chains

We can think of the boundary maps on the chain complexes in
series: Cd → Cd−1 → . . .→ C1 → C0. This is called the chain
complex of M.

These maps and how they treat the chain complexes are the key to
homology.

Aside: It’s worth noting here that
the boundary of a boundary is always
empty.
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Boundaries and cycles

The image of an element of Ck−1 when the map δk : Ck → Ck−1 is
applied is called a boundary.

Then Bk = im δk+1 is called the boundary group - or Bk(C ,F2),
for coefficients from F2.

A cycle is any element with empty boundary; these are in the
kernel of δk , since they are sent to nothing under the map.

Think cycles in graph theory - these are precisely 1-chains that
have no boundary

Similarly, a union of triangles that form a sphere is a 2-chain that
has no boundary, but a disk would have boundary.

Then Zk = ker δk is the set of these cycles.
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Homology

So: we have a chain complex:

Cd → Cd−1 → . . .→ C1 → C0

And two subgroups inside each Ck : Zk = ker δk and Bk = im δk+1.

We then say two chains in Zk are homologous if they differ by a
boundary.

In other words, Hk = Zk/Bk .

Let’s look at what this means. . .
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A simple complex

Consider a simple complex: a
filled in triangle, glued to an
empty triangle:

Here, e1 + e4 + e5 is in image δ2, since it is the boundary of
triangle σ1.

So e2 + e3 + e5 is homologous to e1 + e2 + e3 + e4. (Note that in
this case, they are also homotopic to each other.)

Erin Chambers Computing Optimal Homotopies



Another example: surfaces

Recall my example of surfaces from yesterday: we have triangles,
edges, and vertices, so we get C2 → C1 → C0.

Here, two cycles of edges in C1 are homologous if they differ by a
boundary of some 2d region built from triangles:

Hence, two things are homologous if they form a cut graph - one
side of the cut is the “homology”, or union of faces which have
these edges as a boundary.
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Computing homology

In order to compute homology groups, we need to realize that the
boundary operator is written as a matrix,

If Cp = {α1, α2, . . . , αnp} and Cp−1 = {τ1, τ2, . . . , τnp−1}, then the
boundary map δp is:

From Yusu Wang’s lecture notes

This is why computing ranks of homology groups and testing if
two things are homologous essentially boils down to matrix
multiplication.
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Another example: a tetrahedra

The boundary matrix M2 (for F2 coefficients) just indicates which
edges bound which triangles.

If we want to find the boundary of a collection of 2-faces, we can
multiply the vector of 2-faces by this matrix to find the edges that
bound it.

So δk really turns into a simple linear map between vector spaces.
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Larger complexes

Of course, even simple complexes are much larger:

Image from Vanessa Robin’s thesis

This triangulation will lead to a dim 2 boundary matrix that is 20
by 30, and a dim 1 that is 30 by 10.

However, easy to calculate with: just import your favorite linear
algebra library that can reduce matrices.

Or (better yet) use one of the many that already exist: mapper,
dionysus, javaplex, CTL,. . .
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How to compute homology area

However, I again am interested not just in a homology, but one
with minimum area.

(Note: this is joint work with Mikael Vejdemo Johansson, and
originally considered in slightly more restricted settings in Dey,
Hirani and Krishnamoorthy):

More formally:

Given cycles α and β, try to compute z such that δz = α− β.

Goal: compute z with a smallest area. Recall that δ is a linear
operator (that big matrix), and z and α− β are vectors.

Optimization problem is then:
arg minz (area z), subject to dz = α− β.
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Homology versus homotopy area

Note again that this is NOT the same as homotopy area, at least
for d ≤ 3:

For homology area, we just need a collection of faces whose
boundary is the curve.
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L1 optimization

With area annotations (in a diagonal matrix A) for
triangulation, optimization turns into: arg minz |Az |1, subject
to dz = α− β.

By inverting A, optimization turns into:
arg minz |z |1, subject to dA−1z = α− β.

This is a standard L1 optimization problem: well studied in
compressed sensing.
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L2 optimization

L2-minimal solutions to linear equations have analytic
solutions and are much faster.

L2-minimal is not the same as L1-minimal, however.

It comes close(ish) though:
|x |2 ≤ |x |1 ≤

√
n|x |2

for n = number of triangles in the triangulation.
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An L2 approximation

Given the speed, we try to solve dz = α− β subject to
minimizing zTAz .

We repeat the trick of baking in the triangle area as a
diagonal matrix:
ζ =
√
Az

ζT ζ = (
√
Az)T

√
Az = zTAz

So we try to compute
arg minζ |ζ|2 subject to d(

√
A)−1ζ = α− β

Closed form solution: write W = d(
√
A)−1. Then

ζ = (W TW )−1W T (α− β). Matrix multiplication time.
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Final algorithm for homology area

In matrix multiply time, we can compute the best area homology
on meshes:

(Python code available on github - see paper for link.)
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Chair model
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Crab model
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The End

Thanks for your attention!

Questions?
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