Computing hyperbolic structures from Thurston's equations

Owen Rouillé, Clément Maria

Inria Sophia Antipolis

1^{er} avril 2019

Overview of the talk

Study knots via their complements.

Follows "From angled triangulations to hyperbolic structures" by D. Futer and F. Guéritaud (2012).

Knots

A knot K is an embedding of S^1 in \mathbb{R}^3 via a piecewise linear homeomorphism.

Knots

A knot K is an embedding of S^1 in \mathbb{R}^3 via a piecewise linear homeomorphism.

Ambient isotopy

An ambient isotopy is a continuous deformation of the space.

Two knots are said equivalent if they can be related by an ambient isotopy.

Ambient isotopy

An ambient isotopy is a continuous deformation of the space.

Two knots are said equivalent if they can be related by an ambient isotopy.

knot invariant

An invariant is a property of the knots which is invariant by ambient isotopy.

Gordon-Luecke theorem

If the complements of two picewise linear knots are homeomorphic, then the knots are equivalent.

Gordon-Luecke theorem

If the complements of two picewise linear knots are homeomorphic, then the knots are equivalent.

Gordon-Luecke theorem

If the complements of two picewise linear knots are homeomorphic, then the knots are equivalent.

 \rightarrow We work with $S^3\setminus K.$ It is an open, orientable, cusped 3-manifold.

Gordon-Luecke theorem

If the complements of two picewise linear knots are homeomorphic, then the knots are equivalent.

 \rightarrow We work with $S^3\setminus K.$ It is an open, orientable, cusped 3-manifold.

Hyperbolization theorem (Thurston)

The majority of knot complements admit a hyperbolic structure.

Prerequisites

Thurston's gluing equations

Another formulation of the equations

Conclusion

Generalized triangulations of 3-Manifolds

Generalized triangulations of 3-Manifolds

Generalized triangulations of 3-Manifolds

Hyperbolic ideal tetrahedra

Hyperbolic ideal tetrahedra

Definition

A hyperbolic ideal tetrahedron is the convex hull of four distinct points on $\partial \mathbb{H}^3.$

Hyperbolic ideal tetrahedra

Definition

A hyperbolic ideal tetrahedron is the convex hull of four distinct points on $\partial \mathbb{H}^3.$

It admits three shape parameters :

$$z, \frac{z-1}{z}, \frac{1}{1-z}$$

Prerequisites

Thurston's gluing equations

Another formulation of the equations

Conclusion

Angle structures

Aim

Find the value of the Shape parameters to obtain a hyperbolic structure.

Angle structures

Aim

Find the value of the Shape parameters to obtain a hyperbolic structure.

$$\sum_{i} \log(z_i) = 2i\pi, \quad \forall i, \ \textit{Im}(z_i) \ge 0$$

Normal curve and holonomy

Normal curve

A sequence of segments cutting the triangles only by their edges.

Normal curve and holonomy

Normal curve

A sequence of segments cutting the triangles only by their edges.

Holonomy

$$H(\sigma) = \sum_i \epsilon_i \log(z_i), \,\, \epsilon_i \in \{-1; +1\}$$

Thurston gluing equations

Edge equations

$$\sum_{i} \log(z_i) = 2i\pi$$

Thurston gluing equations

Edge equations

$$\sum_{i} \log(z_i) = 2i\pi$$

Completeness equations

$$\forall \sigma \in \partial M, \ H(\sigma) = 0$$

Thurston gluing equations

Edge equations

$$\sum_{i} \log(z_i) = 2i\pi$$

Completeness equations

$$\forall \sigma \in \partial M, \ H(\sigma) = 0$$

Complete hyperbolic structure problem

- Input : triangulation τ of a knot complement.
- Output : complete hyperbolic structure on τ .

SnapPea

- Library by Jeff Weeks.
- Reference tool for the study of 3 manifolds.

SnapPea

- Library by Jeff Weeks.
- Reference tool for the study of 3 manifolds.

Uses Newton method to directly solve Thurston's equations.

Drawback

Few guaranties on the convergence speed.

Prerequisites

Thurston's gluing equations

Another formulation of the equations

Conclusion

11/19

The polytope of angle structure

12/19

The polytope of angle structure

We drop the complex numbers for angles :

$$z = rac{\sin \gamma}{\sin eta} \exp^{ilpha}.$$

- ▶ all angles are in]0,π[;
- the diahedral angles of the tetrahedra sum to π ;
- around each edge, the angles sum to 2π .

Angle structures can be represented in $\mathbb{R}^{3|\tau|}$

The polytope of angle structure

We drop the complex numbers for angles :

$$z = rac{\sin \gamma}{\sin eta} \exp^{ilpha}.$$

- ▶ all angles are in]0,π[;
- the diahedral angles of the tetrahedra sum to π ;
- around each edge, the angles sum to 2π .

Angle structures can be represented in $\mathbb{R}^{3|\tau|}$

Lemma (Neumann)

With τ the triangulation and $\mathcal{A}(\tau)$ the polytope of angle structures :

dim
$$\mathcal{A}(\tau) = |\tau| + |\partial M|$$

Existence of an hyperbolic metric

Let :

- M be an orientable 3-manifold with boundary consisting of tori;
- au be a corresponding ideal triangulation;
- $\mathcal{A}(\tau)$ be the polytope of angle structures;
- \mathcal{V} be the volume functional of $\mathcal{A}(\tau)$.

Theorem (Casson)

If $\mathcal{A}(au) \neq \emptyset$, then M admits a complete hyperbolic metric.

Theorem (Casson Rivin)

A point $p \in \mathcal{A}(\tau)$ corresponds to a complete hyperbolic metric on the interior of M if and only if p is a critical point of the functional $\mathcal{V} : \mathcal{A}(\tau) \to \mathbf{R}$.

Leading-trailing deformations

Definitions

For a segment crossing a triangle, we denote the leading by + and the trailing corner by \ominus and define them as shown.

Given a curve σ , the associated leading-trailing vector $w(\sigma)$ is the sum of the leading angles minus the sum of the trailing angles of the curve.

Leading trailing deformations

Lemma (Futer Guéritaud)

Let $p \in \mathcal{A}(\tau)$ be an angle structure, and let σ be an oriented normal curve on a cusp of M. Then $w(\sigma)$ is tangent to $\mathcal{A}(\tau)$.

Leading trailing deformations

Lemma (Futer Guéritaud)

Let $p \in \mathcal{A}(\tau)$ be an angle structure, and let σ be an oriented normal curve on a cusp of M. Then $w(\sigma)$ is tangent to $\mathcal{A}(\tau)$.

Lemma (Futer Guéritaud)

Let $(\sigma_i)_i$ be a family of curves spanning $H_1(\partial M)$, then $(w(\sigma_i))_i$ spans the tangent space of $\mathcal{A}(\tau)$.

Volume of an angle structure

Lobachevsky function

Volume of an angle structure

Lobachevsky function

Volume of an ideal tetrahedron

$$\mathcal{V}(\alpha, \beta, \gamma) = \mathcal{I}(\alpha) + \mathcal{I}(\beta) + \mathcal{I}(\gamma)$$

From equation solving to volume maximization

Theorem (Casson Rivin)

A point $p \in \mathcal{A}(\tau)$ corresponds to a complete hyperbolic metric on the interior of M if and only if p is a critical point of the functional $\mathcal{V} : \mathcal{A}(\tau) \to \mathbf{R}$.

From equation solving to volume maximization

Theorem (Casson Rivin)

A point $p \in \mathcal{A}(\tau)$ corresponds to a complete hyperbolic metric on the interior of M if and only if p is a critical point of the functional $\mathcal{V} : \mathcal{A}(\tau) \to \mathbf{R}$.

Lemma

 \mathcal{V} is strictly concave on $\mathcal{A}(\tau)$.

 \rightarrow Complete hyperbolic structure problem can be solved via convex optimization.

From equation solving to volume maximization

Theorem (Casson Rivin)

A point $p \in \mathcal{A}(\tau)$ corresponds to a complete hyperbolic metric on the interior of M if and only if p is a critical point of the functional $\mathcal{V} : \mathcal{A}(\tau) \to \mathbf{R}$.

Lemma

 \mathcal{V} is strictly concave on $\mathcal{A}(\tau)$.

 \rightarrow Complete hyperbolic structure problem can be solved via convex optimization.

Lemma

Let σ be a normal oriented closed curve,

$$rac{\partial \mathcal{V}}{\partial w(\sigma)} = \mathsf{Re}(\mathsf{H}(\sigma))$$

Back to equations via Lagrange multipliers

A way of turning constrained optimization problems into equations.

Back to equations via Lagrange multipliers

A way of turning constrained optimization problems into equations. Lagrange conditions

At the optimum \tilde{x} of f under $\vec{g}(x) = \vec{0}$, there exists $\vec{\lambda}$ such that

Back to equations via Lagrange multipliers

A way of turning constrained optimization problems into equations. Lagrange conditions

At the optimum \tilde{x} of f under $\vec{g}(x) = \vec{0}$, there exists $\vec{\lambda}$ such that

 \rightarrow Gives a system of equations with products of sinus alongside the polytope of angle structures.

Prerequisites

Thurston's gluing equations

Another formulation of the equations

Conclusion

Conclusion

The presentation

- About finding complete hyperbolic structures on knot complements.
- Follows "From angled triangulations to hyperbolic structures" by D. Futer and F. Guéritaud (2012).

Thurston's gluing equations

- Edge gluing equations.
- Trivial holonomy on boundary tori.
- Solved by SnapPea.

Casson-Rivin

- Existence of complete hyperbolic metric.
- Equivalence with critical point of the volume functional.