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Overview of the talk

Study knots via their complements.

Follows "From angled triangulations to hyperbolic structures" by D.
Futer and F. Guéritaud (2012).
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Motivation : knot theory

Knots
A knot K is an embedding of S1 in R3 via a piecewise linear
homeomorphism.
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Motivation : knot theory

Ambient isotopy
An ambient isotopy is a continuous deformation of the space.
Two knots are said equivalent if they can be related by an ambient
isotopy.

knot invariant
An invariant is a property of the knots which is invariant by
ambient isotopy.
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3-Manifolds and knots

Gordon-Luecke theorem
If the complements of two picewise linear knots are homeomorphic,
then the knots are equivalent.

→ We work with S3 \ K . It is an open, orientable, cusped
3-manifold.

Hyperbolization theorem (Thurston)
The majority of knot complements admit a hyperbolic structure.
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Prerequisites

Thurston’s gluing equations

Another formulation of the equations

Conclusion
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Generalized triangulations of 3-Manifolds
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Hyperbolic ideal tetrahedra
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Definition
A hyperbolic ideal tetrahedron is the convex hull of four distinct
points on ∂H3.
It admits three shape parameters :
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Angle structures

Aim
Find the value of the Shape parameters to obtain a hyperbolic
structure.

∑
i

log(zi ) = 2iπ, ∀i , Im(zi ) ≥ 0

8/19



Angle structures

Aim
Find the value of the Shape parameters to obtain a hyperbolic
structure.

∑
i

log(zi ) = 2iπ, ∀i , Im(zi ) ≥ 0

8/19



Normal curve and holonomy

Normal curve
A sequence of segments cutting the triangles only by their edges.
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Holonomy

H(σ) =
∑
i

εi log(zi ), εi ∈ {−1; +1}
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Thurston gluing equations

Edge equations ∑
i

log(zi ) = 2iπ

Completeness equations

∀σ ∈ ∂M, H(σ) = 0

Complete hyperbolic structure problem

I Input : triangulation τ of a knot complement.
I Output : complete hyperbolic structure on τ .
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SnapPea

I Library by Jeff Weeks.
I Reference tool for the study of 3 manifolds.

Uses Newton method to directly solve Thurston’s equations.

Drawback
Few guaranties on the convergence speed.
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The polytope of angle structure
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The polytope of angle structure

We drop the complex numbers for angles :

z =
sin γ

sin β
expiα .

I all angles are in ]0,π[ ;
I the diahedral angles of the tetrahedra sum to π ;
I around each edge, the angles sum to 2π.

Angle structures can be represented in R3|τ |

Lemma (Neumann)
With τ the triangulation and A(τ) the polytope of angle
structures :

dim A(τ) = |τ |+ |∂M|
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Existence of an hyperbolic metric

Let :
I M be an orientable 3–manifold with boundary consisting of

tori ;
I τ be a corresponding ideal triangulation ;
I A(τ) be the polytope of angle structures ;
I V be the volume functional of A(τ).

Theorem (Casson)
If A(τ) 6= ∅, then M admits a complete hyperbolic metric.

Theorem (Casson Rivin)
A point p ∈ A(τ) corresponds to a complete hyperbolic metric on
the interior of M if and only if p is a critical point of the functional
V : A(τ)→ R.
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Leading-trailing deformations

Definitions
For a segment crossing a triangle, we denote the leading by + and
the trailing corner by 	 and define them as shown.

Given a curve σ, the associated leading-trailing vector w(σ) is the
sum of the leading angles minus the sum of the trailing angles of
the curve.
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Leading trailing deformations

Lemma (Futer Guéritaud)
Let p ∈ A(τ) be an angle structure, and let σ be an oriented
normal curve on a cusp of M. Then w(σ) is tangent to A(τ).

Lemma (Futer Guéritaud)
Let (σi )i be a family of curves spanning H1(∂M), then (w(σi ))i
spans the tangent space of A(τ).
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Volume of an angle structure
Lobachevsky function

Л(x) = −
∫ x

0
log |2 sin t| dt

Volume of an ideal tetrahedron

V(α, β, γ) = Л(α) + Л(β) + Л(γ)
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From equation solving to volume maximization

Theorem (Casson Rivin)
A point p ∈ A(τ) corresponds to a complete hyperbolic metric on
the interior of M if and only if p is a critical point of the functional
V : A(τ)→ R.

Lemma
V is strictly concave on A(τ).
→ Complete hyperbolic structure problem can be solved via convex
optimization.

Lemma
Let σ be a normal oriented closed curve,

∂V
∂w(σ)

= Re(H(σ))
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Back to equations via Lagrange multipliers

A way of turning constrained optimization problems into equations.

Lagrange conditions
At the optimum x̃ of f under ~g(x) = ~0, there exists ~λ such that

d( f (x̃)− ~λ · ~g(x̃) ) = 0

f

g

→ Gives a system of equations with products of sinus alongside the
polytope of angle structures.
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Conclusion
The presentation

I About finding complete hyperbolic structures on knot
complements.

I Follows "From angled triangulations to hyperbolic structures"
by D. Futer and F. Guéritaud (2012).

Thurston’s gluing equations

I Edge gluing equations.
I Trivial holonomy on boundary tori.
I Solved by SnapPea.

Casson-Rivin
I Existence of complete hyperbolic metric.
I Equivalence with critical point of the volume functional.
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