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Overview of the talk

Study knots via their complements.

Follows "From angled triangulations to hyperbolic structures" by D.
Futer and F. Guéritaud (2012).
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Motivation : knot theory

Knots
A knot K is an embedding of S* in R3 via a piecewise linear
homeomorphism.
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Motivation : knot theory

Ambient isotopy
An ambient isotopy is a continuous deformation of the space.

Two knots are said equivalent if they can be related by an ambient
isotopy.
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Motivation : knot theory

Ambient isotopy
An ambient isotopy is a continuous deformation of the space.

Two knots are said equivalent if they can be related by an ambient
isotopy.

knot invariant
An invariant is a property of the knots which is invariant by
ambient isotopy.

4/19



3-Manifolds and knots

Gordon-Luecke theorem
If the complements of two picewise linear knots are homeomorphic,
then the knots are equivalent.
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— We work with 3\ K. It is an open, orientable, cusped
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3-Manifolds and knots

Gordon-Luecke theorem
If the complements of two picewise linear knots are homeomorphic,
then the knots are equivalent.

— We work with 3\ K. It is an open, orientable, cusped
3-manifold.

Hyperbolization theorem (Thurston)
The majority of knot complements admit a hyperbolic structure.
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Prerequisites
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Generalized triangulations of 3-Manifolds
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Generalized triangulations of 3-Manifolds
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Generalized triangulations of 3-Manifolds
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Hyperbolic ideal tetrahedra
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Hyperbolic ideal tetrahedra

Definition
A hyperbolic ideal tetrahedron is the convex hull of four distinct
points on OH3.
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Hyperbolic ideal tetrahedra

Definition
A hyperbolic ideal tetrahedron is the convex hull of four distinct
points on OH3.

It admits three shape parameters :

z—1 1
z '1—z

Z,
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Thurston's gluing equations
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Angle structures

Aim
Find the value of the Shape parameters to obtain a hyperbolic
structure.
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Angle structures

Aim
Find the value of the Shape parameters to obtain a hyperbolic
structure.

Z log(z;) = 2im, Vi, Im(z) >0

1
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Normal curve and holonomy

Normal curve
A sequence of segments cutting the triangles only by their edges.

Ay
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Normal curve and holonomy

Normal curve
A sequence of segments cutting the triangles only by their edges.

bvg’g& . .
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Holonomy

H(o) =) eilog(z), e € {~1;+1}

i
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Thurston gluing equations

Edge equations

Z log(z;) = 2im

10/19



Thurston gluing equations

Edge equations

Z log(z;) = 2im

Completeness equations

Vo € OM, H(c) =0
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Thurston gluing equations

Edge equations
Z log(z;) = 2im
Completeness equations
Vo € OM, H(c) =0

Complete hyperbolic structure problem

» Input : triangulation 7 of a knot complement.

» Output : complete hyperbolic structure on 7.
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SnapPea

» Library by Jeff Weeks.

» Reference tool for the study of 3 manifolds.
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SnapPea

» Library by Jeff Weeks.

» Reference tool for the study of 3 manifolds.

Uses Newton method to directly solve Thurston's equations.

Drawback

Few guaranties on the convergence speed.
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Another formulation of the equations
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The polytope of angle structure

12/19



The polytope of angle structure

We drop the complex numbers for angles :
sin vy

sin 3

exp'®

» all angles are in ]0,7[;
» the diahedral angles of the tetrahedra sum to ;

» around each edge, the angles sum to 2.

Angle structures can be represented in R3I7!
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The polytope of angle structure

We drop the complex numbers for angles :
sin
Z = — Vex
_ sin 3
» all angles are in ]0,7[;

i

» the diahedral angles of the tetrahedra sum to ;

» around each edge, the angles sum to 2.
Angle structures can be represented in R3I7!

Lemma (Neumann)

With 7 the triangulation and A(7) the polytope of angle

structures :
dim A(t) = || + |OM|
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Existence of an hyperbolic metric

Let :

M be an orientable 3—manifold with boundary consisting of
tori;

v

» 7 be a corresponding ideal triangulation;

v

A(7) be the polytope of angle structures;
V be the volume functional of A(7).

v

Theorem (Casson)
If A(7) # 0, then M admits a complete hyperbolic metric.

Theorem (Casson Rivin)

A point p € A(7) corresponds to a complete hyperbolic metric on
the interior of M if and only if p is a critical point of the functional
V:A(t) = R.
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Leading-trailing deformations

Definitions
For a segment crossing a triangle, we denote the leading by + and
the trailing corner by © and define them as shown.

Given a curve o, the associated leading-trailing vector w(o) is the
sum of the leading angles minus the sum of the trailing angles of

the curve.




Leading trailing deformations

Lemma (Futer Guéritaud)

Let p € A(7) be an angle structure, and let o be an oriented
normal curve on a cusp of M. Then w(o) is tangent to A(7).
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Leading trailing deformations

Lemma (Futer Guéritaud)

Let p € A(7) be an angle structure, and let o be an oriented
normal curve on a cusp of M. Then w(o) is tangent to A(7).

Lemma (Futer Guéritaud)
Let (o;); be a family of curves spanning H;(OM), then (w(o;));
spans the tangent space of A(7).

>
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Volume of an angle structure

Lobachevsky function

0.5

-0.5

N(x) = —/ log |2 sin t| dt
0
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Volume of an angle structure

Lobachevsky function

N(x) = —/ log |2 sin t| dt
0

0.5

-0.5

-n 0 n

Volume of an ideal tetrahedron

V(e B,7) = (@) + 1(B) + N(v)
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From equation solving to volume maximization

Theorem (Casson Rivin)

A point p € A(T) corresponds to a complete hyperbolic metric on
the interior of M if and only if p is a critical point of the functional
V:A(t) = R.
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From equation solving to volume maximization

Theorem (Casson Rivin)

A point p € A(T) corresponds to a complete hyperbolic metric on
the interior of M if and only if p is a critical point of the functional
V:A(t) = R.

Lemma
V is strictly concave on A(7).

— Complete hyperbolic structure problem can be solved via convex
optimization.
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From equation solving to volume maximization

Theorem (Casson Rivin)

A point p € A(T) corresponds to a complete hyperbolic metric on
the interior of M if and only if p is a critical point of the functional
V:A(t) = R.

Lemma
V is strictly concave on A(7).

— Complete hyperbolic structure problem can be solved via convex

optimization.
Lemma
Let o be a normal oriented closed curve,
)%
= Re(H
Gue) = FelH(@)
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Back to equations via Lagrange multipliers

A way of turning constrained optimization problems into equations.
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Back to equations via Lagrange multipliers

A way of turning constrained optimization problems into equations.

Lagrange conditions
At the optimum % of f under g(x) = 0, there exists X such that

d( f(%) - X-g(x)) =0
g
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Back to equations via Lagrange multipliers

A way of turning constrained optimization problems into equations.

Lagrange conditions
At the optimum % of f under g(x) = 0, there exists X such that

d( f(%) - X-g(x)) =0
g

— Gives a system of equations with products of sinus alongside the
polytope of angle structures.
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Conclusion
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Conclusion

The presentation
» About finding complete hyperbolic structures on knot
complements.

» Follows "From angled triangulations to hyperbolic structures"
by D. Futer and F. Guéritaud (2012).

Thurston's gluing equations

» Edge gluing equations.
» Trivial holonomy on boundary tori.
» Solved by SnapPea.

Casson-Rivin

» Existence of complete hyperbolic metric.
» Equivalence with critical point of the volume functional.
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