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• Short exact sequence based method => tracking homology variations

• Theoretical and experimental study => complexity depending on the operated part

• Cautions have to be taken regarding the implementation to preserve locality

Perspectives

• Apply the method to the inverse operation (splitting cells)

• Apply in an application case: animation 

• Parallelization
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ATTACHMENTS

7

Sparse matrices representation schemes 

0 4 1
2 0 5
0 3 0

VALUES 2 4 3 1 5

ROW INDEX 1 0 2 0 1

COLUMN

START INDEX
0 1 3 6

CCS :
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ANALYSIS : SPATIAL COMPLEXITY EVOLUTION ON COMPLEXES

5

∅

𝑡 + 2 𝑡 + 3

❑ Operation

❑ Added part

❑ Initialization
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PROPOSED SOLUTION

5

Implicit identity

1 3 2
0 5 0
4 1 0

(0,0,2)

❑ Identity block

3 2

4

4 1

0 3 2
0 4 0
4 1 0

1 0 0
0 1 0
0 0 0
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