LOCAL COMPUTATION OF HOMOLOGY VARIATIONS RELATED TO CELLS MERGING

Theoretical results and implementation issues

1: CONTEXT AND OBJECTIVES

1

Operation: merging cells

Operation: merging cells

At each step: control of the object construction according to computed information

Operation: merging cells

At each step: control of the object construction according to computed information

=> Compute homology efficiently

2: STATE OF THE ART

2 SMITH NORMAL FORM (SNF)

At each step:

Boundary matrices

- Munkres, James R. (1984). *Elements of algebraic topology*.
- Hatcher, Allen. (2002). Algebraic topology.

2 SMITH NORMAL FORM (SNF)

- Munkres, James R. (1984). *Elements of algebraic topology*.
- Hatcher, Allen. (2002). Algebraic topology.

- Munkres, James R. (1984). *Elements of algebraic topology*.
- Hatcher, Allen. (2002). Algebraic topology.

- Munkres, James R. (1984). *Elements of algebraic topology*.
- Hatcher, Allen. (2002). Algebraic topology.

- Forman, R. (1998). Morse theory for cell complexes.
- Gonzalez-Lorenzo, A., Bac, A., Mari, J. L., & Real, P. (2017). Allowing cycles in discrete Morse theory.

- Forman, R. (1998). Morse theory for cell complexes.
- Gonzalez-Lorenzo, A., Bac, A., Mari, J. L., & Real, P. (2017). Allowing cycles in discrete Morse theory.

- Zomorodian, A., & Carlsson, G. (2005). Computing persistent homology.
- Edelsbrunner, H., Letscher, D., & Zomorodian, A. (2000). Topological persistence and simplification.

- Zomorodian, A., & Carlsson, G. (2005). Computing persistent homology.
- Edelsbrunner, H., Letscher, D., & Zomorodian, A. (2000). *Topological persistence and simplification*.

- Zomorodian, A., & Carlsson, G. (2005). Computing persistent homology.
- Edelsbrunner, H., Letscher, D., & Zomorodian, A. (2000). Topological persistence and simplification.

NO FILTRATION WHEN MERGING CELLS

- From t 1 to t: merged cells
- From t to t-1 : modified boundary

- Zomorodian, A., & Carlsson, G. (2005). Computing persistent homology.
- Edelsbrunner, H., Letscher, D., & Zomorodian, A. (2000). Topological persistence and simplification.

Goal

• Tracking homology variations induced by a merging operation

- D. Boltcheva, D. Canino, S. Merino Aceituno, J.-C. Leon, L. De Floriani, and F. Hetroy. An iterative algorithm for homology computation on simplical shapes.
- Rubio, J., & Sergeraert, F. (2012). Constructive homological algebra and applications.
- Alayrangues, S., Fuchs, L., Lienhardt, P., & Peltier, S. (2015). *Incremental Computation of the Homology of Generalized Maps: An Application of Effective Homology Results.*

Goal

٠

- Tracking homology variations induced by a merging operation
- Taking advantage of locality => complexity: size of the operated part

- D. Boltcheva, D. Canino, S. Merino Aceituno, J.-C. Leon, L. De Floriani, and F. Hetroy. An iterative algorithm for homology computation on simplical shapes.
- Rubio, J., & Sergeraert, F. (2012). Constructive homological algebra and applications.
- Alayrangues, S., Fuchs, L., Lienhardt, P., & Peltier, S. (2015). *Incremental Computation of the Homology of Generalized Maps: An Application of Effective Homology Results.*

Goal

٠

- Tracking homology variations induced by a merging operation
- Taking advantage of locality => complexity: size of the operated part

Contributions

• Theoretical and experimental complexity in the case of the merging cells operation

- D. Boltcheva, D. Canino, S. Merino Aceituno, J.-C. Leon, L. De Floriani, and F. Hetroy. An iterative algorithm for homology computation on simplical shapes.
- Rubio, J., & Sergeraert, F. (2012). Constructive homological algebra and applications.
- Alayrangues, S., Fuchs, L., Lienhardt, P., & Peltier, S. (2015). *Incremental Computation of the Homology of Generalized Maps: An Application of Effective Homology Results.*

Goal

٠

- Tracking homology variations induced by a merging operation
- Taking advantage of locality => complexity: size of the operated part

Contributions

- Theoretical and experimental complexity in the case of the merging cells operation
- Highlighting critical cases

- D. Boltcheva, D. Canino, S. Merino Aceituno, J.-C. Leon, L. De Floriani, and F. Hetroy. An iterative algorithm for homology computation on simplical shapes.
- Rubio, J., & Sergeraert, F. (2012). Constructive homological algebra and applications.
- Alayrangues, S., Fuchs, L., Lienhardt, P., & Peltier, S. (2015). *Incremental Computation of the Homology of Generalized Maps: An Application of Effective Homology Results.*

- Forman, R. (1998). Morse theory for cell complexes.
- Gonzalez-Lorenzo, A., Bac, A., Mari, J. L., & Real, P. (2017). Allowing cycles in discrete Morse theory.

4: METHOD

Maintain a homological equivalence

Maintain a homological equivalence

3 operations, 4 construction steps Maintain a homological equivalence

3 operations, 4 construction steps Maintain a homological equivalence

3 operations, 4 construction steps Maintain a homological equivalence

Maintain a homological equivalence

At each step : compute homology on reduced objects

Initial object

Initial object => build a homological equivalence

Initial object => build a homological equivalence

- Forman, R. (1998). Morse theory for cell complexes.
- Gonzalez-Lorenzo, A., Bac, A., Mari, J. L., & Real, P. (2017). Allowing cycles in discrete Morse theory.

t = 0. -•--• • ---- • . - • ---- • _ _ _ - -- • - -

OperationInitialization

- •

- -

OperationInitialization

- •

.

OperationInitialization

•

• Rubio, J., & Sergeraert, F. (2012). Constructive homological algebra and applications.

• Alayrangues, S., Fuchs, L., Lienhardt, P., & Peltier, S. (2015). *Incremental Computation of the Homology of Generalized Maps: An Application of Effective Homology Results.*

METHOD: WHEN MERGING CELLS

Operation
Added complexity
Initialization

Operation
Added complexity
Initialization

P 52

- •

t = 2

Operation
Added complexity
Initialization

Operation
Added complexity
Initialization

P 56

Ø

Operation

□ Initialization

t = 2t = 3 \overrightarrow{s} r- • i^B i^S Added complexity

_

5: ANALYSIS

Is the computation complexity only related to the complexity of the operated part?

At step *t* :

At step *t* :

• Space: object at step t = initial object + $\sum_{n=1}^{t}$ operations representations

At step *t* :

- Space: object at step t = initial object + $\sum_{n=1}^{t}$ operations representations
- Time: depends only on current step operation : $\partial_{t+1} = \begin{pmatrix} \partial_{op.rep.} & i^B \\ 0 & \partial_t \end{pmatrix}$

At step *t* :

- Space: object at step t = initial object + $\sum_{n=1}^{t}$ operations representations
- Time: depends only on current step operation : $\partial_{t+1} = \begin{pmatrix} \partial_{op.rep.} & i^B \\ 0 & \partial_t \end{pmatrix}$
- Possible loss of locality browsing ∂_t to construct ∂_{t+1} :=> Construct $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ with a complexity depending only on A,B,C

5 FOCUS ON REDUCED OBJECTS

EXACTLY THE SAME BEHAVIOR than intermediate objects.

FOCUS ON REDUCED OBJECTS

EXACTLY THE SAME BEHAVIOR than intermediate objects. At step *t* :

- Space: object at step $t = initial object + \sum_{n=1}^{t} operations representations$
- Time: depends only on current step operation : $\partial_{t+1} = \begin{pmatrix} \partial_{op.rep.} & i^S \\ 0 & \partial_t \end{pmatrix}$
- Possible loss of locality browsing ∂_t to construct $\partial_{t+1} :=$ Construct $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ with a complexity depending only on A,B,C

5 FOCUS ON *f* COMPLEXITY

□ Added complexity

 $f^2 = \begin{pmatrix} \mathbf{0} \\ f^1 j \end{pmatrix}$

□ Added complexity

5 FOCUS ON *f* COMPLEXITY

 $f^2 = \begin{pmatrix} 0\\ f^1 j \end{pmatrix}$ - • ---- • Possible loss of locality: f^1j **f**1

.....

t = 2

Added complexity

5 FOCUS ON *f* COMPLEXITY

 $f^{2} = \begin{pmatrix} 0 \\ f^{1}j \end{pmatrix}$ Possible loss of locality: $f^{1}j$ Identity + Variations f^{1}

.....

Added complexity

5 FOCUS ON *h^s* COMPLEXITY

5 FOCUS ON *h^s* COMPLEXITY

 $h^{S2} = \begin{pmatrix} -h^{S0} & h^{S0}i^Bh^{S1} \\ 0 & h^{S1} \end{pmatrix}$

5 FOCUS ON *h^s* COMPLEXITY

Possible loss of locality: browsing h^{S1} for h^{S2} construction

 $h^{S2} = \begin{pmatrix} -h^{S0} & h^{S0}i^Bh^{S1} \\ 0 & h^{S1} \end{pmatrix}$

5 FOCUS ON *h^s* COMPLEXITY

Possible loss of locality: browsing h^{S1} for h^{S2} construction

 $h^{S2} = \begin{pmatrix} -h^{S0} & h^{S0}i^Bh^{S1} \\ 0 & h^{S1} \end{pmatrix} \Rightarrow \text{Construct} \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ with a complexity depending only on A,B,C

5 FOCUS ON *g* COMPLEXITY

5 FOCUS ON g COMPLEXITY

5

FOCUS ON g COMPLEXITY

5

FOCUS ON g COMPLEXITY

 $g^2 = (-s\partial^1 r g^0 \quad s g^1)$ r S **Possible loss of locality:** sg^1 Identity + Variations g^0 g^1 • $\cdot \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ with a complexity depending only on A,B,C . Added complexity □ Initialization complexity

Is the computation complexity only related to the complexity of the operated part?

Is the computation complexity only related to the complexity of the operated part?

Yes, with the following conditions :

Is the computation complexity only related to the complexity of the operated part?

Yes, with the following conditions :

• Being able to construct $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ with an algorithm browsing A, B, C only

Is the computation complexity only related to the complexity of the operated part?

Yes, with the following conditions :

- Being able to construct $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ with an algorithm browsing A, B, C only
- Having a matrix product algorithm using an implicit representation of identity

Is the computation complexity only related to the complexity of the operated part?

Yes, with the following conditions :

- Being able to construct $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ with an algorithm browsing A, B, C only
- Having a matrix product algorithm using an implicit representation of identity
- Handling sparsity

Software	IMPLICIT IDENTITY
Eigen	
INTELMKL	
Νυμργ	
Boost	

Software	IMPLICIT IDENTITY	$\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ BROWSING ONLY A, B, C
Eigen		
INTELMKL		
Νυμργ		
Boost		

Essentially due to sparsity representation schemes

Software	IMPLICIT IDENTITY	$\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ browsing only A, B, C	SPARSE MATRICES
EIGEN			
INTELMKL			
NUMPY			
Вооѕт			

Doubly linked matrices + (i, j, v)

Doubly linked matrices + (i, j, v)

Doubly linked matrices + (i, j, v)

6 MORE EFFICIENT WITHOUT GENERATORS

Some morphisms can be ignored

6 MORE EFFICIENT WITHOUT GENERATORS

Some morphisms can be ignored

At each step: control of the object construction according to computed information

• Short exact sequence based method => tracking homology variations

At each step: control of the object construction according to computed information

- Short exact sequence based method => tracking homology variations
- Theoretical and experimental study => complexity depending on the operated part

At each step: control of the object construction according to computed information

- Short exact sequence based method => tracking homology variations
- Theoretical and experimental study => complexity depending on the operated part
- · Cautions have to be taken regarding the implementation to preserve locality

At each step: control of the object construction according to computed information

- Short exact sequence based method => tracking homology variations
- Theoretical and experimental study => complexity depending on the operated part
- Cautions have to be taken regarding the implementation to preserve locality

Perspectives

• Apply the method to the inverse operation (splitting cells)

At each step: control of the object construction according to computed information

- Short exact sequence based method => tracking homology variations
- Theoretical and experimental study => complexity depending on the operated part
- · Cautions have to be taken regarding the implementation to preserve locality

Perspectives

- Apply the method to the inverse operation (splitting cells)
- Apply in an application case: animation

At each step: control of the object construction according to computed information

- Short exact sequence based method => tracking homology variations
- Theoretical and experimental study => complexity depending on the operated part
- Cautions have to be taken regarding the implementation to preserve locality

Perspectives

- Apply the method to the inverse operation (splitting cells)
- Apply in an application case: animation
- Parallelization

P 112

GARBAGE

Sparse matrices representation schemes

		VALUES	2	4	3	1	5
$\begin{pmatrix} 0 & 4 & 1 \\ 2 & 0 & 5 \end{pmatrix}$	CCS :	Row Index	1	0	2	0	1
	000.	COLUMN START INDEX	0	1	3	6	
$\begin{pmatrix} 2 & 0 & 3 \\ 0 & 3 & 0 \end{pmatrix}$							

ANALYSIS : SPATIAL COMPLEXITY EVOLUTION ON COMPLEXES

Identity block

