LOCAL COMPUTATION OF HOMOLOGY VARIATIONS RELATED TO CELLS MERGING

Theoretical results and implementation issues
xlim

1: CONTEXT AND OBJECTIVES

1

CONTEXT AND OBJECTIVES

1

CONTEXT AND OBJECTIVES

1

CONTEXT AND OBJECTIVES

1

CONTEXT AND OBJECTIVES

CONTEXT AND OBJECTIVES

CONTEXT AND OBJECTIVES

Operation: merging cells
At each step: control of the object construction according to computed information
=> Compute homology efficiently

2: STATE OF THE ART

SMITH NORMAL FORM (SNF)

At each step:

Boundary
matrices

- Munkres, James R. (1984). Elements of algebraic topology.
- Hatcher, Allen. (2002). Algebraic topology.

SMITH NORMAL FORM (SNF)

- Munkres, James R. (1984). Elements of algebraic topology.
- Hatcher, Allen. (2002). Algebraic topology.

SMITH NORMAL FORM (SNF)

- Munkres, James R. (1984). Elements of algebraic topology.
- Hatcher, Allen. (2002). Algebraic topology.

SMITH NORMAL FORM (SNF)

- Munkres, James R. (1984). Elements of algebraic topology.
- Hatcher, Allen. (2002). Algebraic topology.

REDUCTION

- Forman, R. (1998). Morse theory for cell complexes.
- Gonzalez-Lorenzo, A., Bac, A., Mari, J. L., \& Real, P. (2017). Allowing cycles in discrete Morse theory.

REDUCTION

- Forman, R. (1998). Morse theory for cell complexes.
- Gonzalez-Lorenzo, A., Bac, A., Mari, J. L., \& Real, P. (2017). Allowing cycles in discrete Morse theory.

2

PERSISTENT HOMOLOGY

- Zomorodian, A., \& Carlsson, G. (2005). Computing persistent homology.
- Edelsbrunner, H., Letscher, D., \& Zomorodian, A. (2000). Topological persistence and simplification.

2

PERSISTENT HOMOLOGY

No FILTRATION WHEN MERGING CELLS

- Zomorodian, A., \& Carlsson, G. (2005). Computing persistent homology.
- Edelsbrunner, H., Letscher, D., \& Zomorodian, A. (2000). Topological persistence and simplification.

PERSISTENT HOMOLOGY

No FILTRATION WHEN MERGING CELLS

- From $\boldsymbol{t}-\mathbf{1}$ to \boldsymbol{t} : merged cells
- Zomorodian, A., \& Carlsson, G. (2005). Computing persistent homology.
- Edelsbrunner, H., Letscher, D., \& Zomorodian, A. (2000). Topological persistence and simplification.

PERSISTENT HOMOLOGY

No FILTRATION WHEN MERGING CELLS

- From $\boldsymbol{t}-1$ to \boldsymbol{t} : merged cells
- From \boldsymbol{t} to $\boldsymbol{t} \mathbf{- 1}$: modified boundary
- Zomorodian, A., \& Carlsson, G. (2005). Computing persistent homology.
- Edelsbrunner, H., Letscher, D., \& Zomorodian, A. (2000). Topological persistence and simplification.

SHORT EXACT SEQUENCE BASED METHOD

Goal

- Tracking homology variations induced by a merging operation
- D. Boltcheva, D. Canino, S. Merino Aceituno, J.-C. Leon, L. De Floriani, and F. Hetroy. An iterative algorithm for homology computation on simplical shapes.
- Rubio, J., \& Sergeraert, F. (2012). Constructive homological algebra and applications.
- Alayrangues, S., Fuchs, L., Lienhardt, P., \& Peltier, S. (2015). Incremental Computation of the Homology of

SHORT EXACT SEQUENCE BASED METHOD

Goal

- Tracking homology variations induced by a merging operation
- Taking advantage of locality => complexity: size of the operated part
- D. Boltcheva, D. Canino, S. Merino Aceituno, J.-C. Leon, L. De Floriani, and F. Hetroy. An iterative algorithm for homology computation on simplical shapes.
- Rubio, J., \& Sergeraert, F. (2012). Constructive homological algebra and applications.
- Alayrangues, S., Fuchs, L., Lienhardt, P., \& Peltier, S. (2015). Incremental Computation of the Homology of

SHORT EXACT SEQUENCE BASED METHOD

Goal

- Tracking homology variations induced by a merging operation
- Taking advantage of locality => complexity: size of the operated part

Contributions

- Theoretical and experimental complexity in the case of the merging cells operation
- D. Boltcheva, D. Canino, S. Merino Aceituno, J.-C. Leon, L. De Floriani, and F. Hetroy. An iterative algorithm for homology computation on simplical shapes.
- Rubio, J., \& Sergeraert, F. (2012). Constructive homological algebra and applications.
- Alayrangues, S., Fuchs, L., Lienhardt, P., \& Peltier, S. (2015). Incremental Computation of the Homology of

SHORT EXACT SEQUENCE BASED METHOD

Goal

- Tracking homology variations induced by a merging operation
- Taking advantage of locality => complexity: size of the operated part

Contributions

- Theoretical and experimental complexity in the case of the merging cells operation
- Highlighting critical cases
- D. Boltcheva, D. Canino, S. Merino Aceituno, J.-C. Leon, L. De Floriani, and F. Hetroy. An iterative algorithm for homology computation on simplical shapes.
- Rubio, J., \& Sergeraert, F. (2012). Constructive homological algebra and applications.
- Alayrangues, S., Fuchs, L., Lienhardt, P., \& Peltier, S. (2015). Incremental Computation of the Homology of

3: TOOLS

3
REDUCTION

Reduced object

Reducing object while preserving homology

- 3 morphisms h, f, g

REDUCTION

Reducing object while preserving homology

- 3 morphisms h, f, g
- Forman, R. (1998). Morse theory for cell complexes.
- Gonzalez-Lorenzo, A., Bac, A., Mari, J. L., \& Real, P. (2017). Allowing cycles in discrete Morse theory.

HOMOLOGICAL EQUIVALENCE

4: METHOD

METHOD: STUDIED OPERATION SET

3 operations, 4 construction steps

METHOD: PRINCIPLE

3 operations, 4 construction steps
Maintain a homological equivalence

METHOD: PRINCIPLE

3 operations, 4 construction steps
Maintain a homological equivalence

METHOD: PRINCIPLE

3 operations, 4 construction steps
Maintain a homological equivalence

METHOD: PRINCIPLE

3 operations, 4 construction steps
Maintain a homological equivalence

4

METHOD: PRINCIPLE

3 operations, 4 construction steps
Maintain a homological equivalence

METHOD: PRINCIPLE

3 operations, 4 construction steps
Maintain a homological equivalence

At each step : compute homology on reduced objects

METHOD: INITIALIZATION

Initial object

METHOD: INITIALIZATION

METHOD: INITIALIZATION

Identity

Computed
reduction

- Forman, R. (1998). Morse theory for cell complexes.
- Gonzalez-Lorenzo, A., Bac, A., Mari, J. L., \& Real, P. (2017). Allowing cycles in discrete Morse theory.

METHOD: WHEN MERGING CELLS

Operation
I Initialization

METHOD; WHEN MERGING CELLS

peration
] Initialization

METHOD: WHEN MERGING CELLS

Operation
I Initialization

METHOD: WHEN MERGING CELLS

\downarrow

METHOD: WHEN MERGING CELLS

$$
t=1
$$

OperationInitialization

- Rubio, J., \& Sergeraert, F. (2012). Constructive homological algebra and applications.
- Alayrangues, S., Fuchs, L., Lienhardt, P., \& Peltier, S. (2015). Incremental Computation of the Homology of

METHOD: WHEN MERGING CELLS

\square Operation
I Initialization

\uparrow
-

METHOD: WHEN MERGING CELLS

-

$t=0$

IDENTITY \#
-

Computed reduction

- Operation

I Initialization

METHOD: WHEN MERGING CELLS

\uparrow

\square Operation
I Initialization

METHOD: WHEN MERGING CELLS

\square Operation
Initialization
$t=0$

介

- $\xrightarrow{i^{B}}$

\Downarrow
- $\xrightarrow{i^{S}}$

METHOD: WHEN MERGING CELLS

$t=0$

介

- $\xrightarrow{i^{S}}$

$\|$

\square Operation
Initialization

METHOD: WHEN MERGING CELLS

- Operation
\square Added complexity
- Initialization

METHOD: WHEN MERGING CELLS

- Operation
\square Added complexity
- Initialization

METHOD: WHEN MERGING CELLS

- Operation
\square Added complexity
- Initialization

介

METHOD: WHEN MERGING CELLS

\square Operation

- Added complexity
- Initialization

METHOD: WHEN MERGING CELLS

\square Operation
\square Added complexity

METHOD: WHEN MERGING CELLS

- Operation
\square Added complexity
- Initialization

METHOD: WHEN MERGING CELLS

- Operation
\square Added complexity
- Initialization

METHOD: WHEN MERGING CELLS

!

- Operation

I Added complexity

- Initialization

METHOD: WHEN MERGING CELLS

Operation
\square Added complexity

- Initialization

METHOD: WHEN MERGING CELLS

\square Operation
\square Added complexity
$\varnothing \quad \xrightarrow{i^{S}}$

5: ANALYSIS

5

ANALYSIS

Is the computation complexity only related to the complexity of the operated part?

FOCUS ON INTERMEDIATE OBJECTS

At step t :

\square Added complexity
\square Initialization

FOCUS ON INTERMEDIATE OBJECTS

At step t :

- Space: object at step $t=$ initial object $+\sum_{n=1}^{t}$ operations representations
\square Added complexity
\square Initialization

FOCUS ON INTERMEDIATE OBJECTS

At step t :

- Space: object at step $t=$ initial object $+\sum_{n=1}^{t}$ operations representations
- Time: depends only on current step operation : $\partial_{t+1}=\left(\begin{array}{cc}\partial_{\text {op.rep. }} & i^{B} \\ 0 & \partial_{t}\end{array}\right)$

- Added complexity
- Initialization

FOCUS ON INTERMEDIATE OBJECTS

At step t :

- Space: object at step $t=$ initial object $+\sum_{n=1}^{t}$ operations representations
- Time: depends only on current step operation : $\partial_{t+1}=\left(\begin{array}{cc}\partial_{\text {op.rep. }} & i^{B} \\ 0 & \partial_{t}\end{array}\right)$
- Possible loss of locality browsing ∂_{t} to construct ∂_{t+1} : $=>\operatorname{Construct}\left(\begin{array}{ll}\boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D}\end{array}\right)$ with a complexity depending only on A, B, C
Added complexityInitialization

FOCUS ON REDUCED OBJECTS

EXACTLY THE SAME bEHAVIOR than intermediate objects.
\square Added complexity
\square Initialization
$t=2$
:

$$
t=3
$$

FOCUS ON REDUCED OBJECTS

EXACTLY THE SAME behavior than intermediate objects. At step t :

- Space: object at step $t=$ initial object $+\sum_{n=1}^{t}$ operations representations
- Time: depends only on current step operation: $\partial_{t+1}=\left(\begin{array}{cc}\partial_{\text {op.rep. }} & i^{S} \\ 0 & \partial_{t}\end{array}\right)$
- Possible loss of locality browsing ∂_{t} to construct ∂_{t+1} : $=>\operatorname{Construct}\left(\begin{array}{ll}\boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D}\end{array}\right)$ with a complexity depending only on A, B, C
\square Added complexity
- Initialization

$t=2$

\longrightarrow
$\bullet=$

FOCUS ON f COMPLEXITY

FOCUS ON f COMPLEXITY

$$
f^{2}=\binom{0}{f^{1} j}
$$

\square Added complexity
\square Initialization complexity

FOCUS ON f COMPLEXITY

$$
f^{2}=\binom{0}{f^{1} j}
$$

Possible loss of locality: $\boldsymbol{f}^{\boldsymbol{1}} \boldsymbol{j}$

- Added complexity

Initialization complexity

FOCUS ON f COMPLEXITY

$$
f^{2}=\binom{0}{f^{1} j}
$$

Possible loss of locality: $\boldsymbol{f}^{1} j$

- Identity + Variations

Added complexity
I Initialization complexity

FOCUS ON h^{S} COMPLEXITY

FOCUS ON h^{S} COMPLEXITY

$$
h^{S 2}=\left(\begin{array}{cc}
-h^{S 0} & h^{S 0} i^{B} h^{S 1} \\
0 & h^{S 1}
\end{array}\right)
$$

FOCUS ON h^{S} COMPLEXITY

Possible loss of locality: browsing $\boldsymbol{h}^{S 1}$ for $\boldsymbol{h}^{S 2}$ construction

$$
h^{S 2}=\left(\begin{array}{cc}
-h^{S 0} & h^{S 0} i^{B} h^{S 1} \\
0 & h^{S 1}
\end{array}\right)
$$

FOCUS ON h^{S} COMPLEXITY

Possible loss of locality: browsing $h^{S 1}$ for $h^{S 2}$ construction

$h^{S 2}=\left(\begin{array}{cc}-h^{S 0} & h^{S 0} i^{B} h^{S 1} \\ 0 & h^{S 1}\end{array}\right)=>$ Construct $\left(\begin{array}{ll}\boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D}\end{array}\right)$ with a complexity depending only on A,B,C

FOCUS ON g COMPLEXITY

REQUIREMENTS

Is the computation complexity only related to the complexity of the operated part?

REQUIREMENTS

Is the computation complexity only related to the complexity of the operated part?

Yes, with the following conditions :

REQUIREMENTS

Is the computation complexity only related to the complexity of the operated part?

Yes, with the following conditions :

- Being able to construct $\left(\begin{array}{ll}\boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D}\end{array}\right)$ with an algorithm browsing A, B, C only

REQUIREMENTS

Is the computation complexity only related to the complexity of the operated part?

Yes, with the following conditions :

- Being able to construct $\left(\begin{array}{ll}\boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D}\end{array}\right)$ with an algorithm browsing A, B, C only
- Having a matrix product algorithm using an implicit representation of identity

REQUIREMENTS

Is the computation complexity only related to the complexity of the operated part?

Yes, with the following conditions :

- Being able to construct $\left(\begin{array}{ll}\boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D}\end{array}\right)$ with an algorithm browsing A, B, C only
- Having a matrix product algorithm using an implicit representation of identity
- Handling sparsity

TRIED SOLUTIONS

SOFTWARE	IMPLICIT IDENTITY
EIGEN	
InTELMKL	
Numpy	
Boost	

TRIED SOLUTIONS

SOFTWARE	IMPLICIT IDENTITY	$\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ BROWSING ONLY A, B, C
EIGEN		
INTELMKL		
Numpy		
Boost		

Essentially due to sparsity representation schemes

TRIED SOLUTIONS

Software	Implicit identity	$\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ browsing only A, B, C	Sparse matrices	
Eigen				
IntelMKL				
Numpy				
Boost				

5

PROPOSED SOLUTION

Doubly linked matrices + (i,j,v)

$\left(\begin{array}{llll}1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 4 & 0 & 3 & 4\end{array}\right)$

5

PROPOSED SOLUTION

Doubly linked matrices + (i,j,v)

5

PROPOSED SOLUTION

Doubly linked matrices + (i,j,v)

$\left(\begin{array}{llll}1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 4 & 0 & 3 & 4\end{array}\right)$

5

PROPOSED SOLUTION

Doubly linked matrices : construct $\left(\begin{array}{ll}\boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D}\end{array}\right)$ with an algorithm browsing A, B, C only
$\left(\begin{array}{llll}1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 4 & 0 & 3 & 4\end{array}\right)$

5

PROPOSED SOLUTION

Doubly linked matrices : construct $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ with an algorithm browsing A, B, C only

$$
\left(\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 2 & 1 \\
4 & 0 & 3 & 4
\end{array}\right) \xrightarrow{\left(\begin{array}{ll}
0 & 0 \\
4 & 0
\end{array}\right)}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) ~\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right)
$$

5

PROPOSED SOLUTION

Doubly linked matrices : construct $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ with an algorithm browsing A, B, C only

$$
\left(\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 2 & 1 \\
4 & 0 & 3 & 4
\end{array}\right) \xrightarrow{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)}\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right)
$$

5

PROPOSED SOLUTION

Doubly linked matrices : construct $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ with an algorithm browsing A, B, C only

$$
\left(\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 2 & 1 \\
4 & 0 & 3 & 4
\end{array}\right) \xrightarrow{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)}\left(\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right)
$$

5

PROPOSED SOLUTION

Doubly linked matrices: construct $\left(\begin{array}{ll}\boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{C} & \boldsymbol{D}\end{array}\right)$ with an algorithm browsing A, B, C only

5

PROPOSED SOLUTION

Doubly linked matrices : construct $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ with an algorithm browsing A, B, C only

PROPOSED SOLUTION

Doubly linked matrices : construct $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ with an algorithm browsing A, B, C only Implicit representation of identity

$$
\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right)
$$

5

PROPOSED SOLUTION

Doubly linked matrices : construct $\left(\begin{array}{ll}A & B \\ C & \boldsymbol{D}\end{array}\right)$ with an algorithm browsing A, B, C only Implicit representation of identity

$$
\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right)
$$

5

PROPOSED SOLUTION

Doubly linked matrices : construct $\left(\begin{array}{ll}A & B \\ C & \boldsymbol{D}\end{array}\right)$ with an algorithm browsing A, B, C only Implicit representation of identity

5

PROPOSED SOLUTION

Doubly linked matrices : construct $\left(\begin{array}{ll}A & B \\ C & \boldsymbol{D}\end{array}\right)$ with an algorithm browsing A, B, C only Implicit representation of identity

5

PROPOSED SOLUTION

Doubly linked matrices: construct $\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ with an algorithm browsing A, B, C only
Implicit representation of identity

6: CONCLUSION AND PERSPECTIVES

MORE EFFICIENT WITHOUT GENERATORS

MORE EFFICIENT WITHOUT GENERATORS

Some morphisms can be ignored

MORE EFFICIENT WITHOUT GENERATORS

Some morphisms can be ignored

CONCLUSION AND PERSPECTIVES

At each step: control of the object construction according to computed information

- Short exact sequence based method => tracking homology variations

CONCLUSION AND PERSPECTIVES

At each step: control of the object construction according to computed information

- Short exact sequence based method => tracking homology variations
- Theoretical and experimental study => complexity depending on the operated part

CONCLUSION AND PERSPECTIVES

At each step: control of the object construction according to computed information

- Short exact sequence based method => tracking homology variations
- Theoretical and experimental study => complexity depending on the operated part
- Cautions have to be taken regarding the implementation to preserve locality

CONCLUSION AND PERSPECTIVES

At each step: control of the object construction according to computed information

- Short exact sequence based method => tracking homology variations
- Theoretical and experimental study => complexity depending on the operated part
- Cautions have to be taken regarding the implementation to preserve locality

Perspectives

- Apply the method to the inverse operation (splitting cells)

CONCLUSION AND PERSPECTIVES

At each step: control of the object construction according to computed information

- Short exact sequence based method => tracking homology variations
- Theoretical and experimental study => complexity depending on the operated part
- Cautions have to be taken regarding the implementation to preserve locality

Perspectives

- Apply the method to the inverse operation (splitting cells)
- Apply in an application case: animation

CONCLUSION AND PERSPECTIVES

At each step: control of the object construction according to computed information

- Short exact sequence based method => tracking homology variations
- Theoretical and experimental study => complexity depending on the operated part
- Cautions have to be taken regarding the implementation to preserve locality

Perspectives

- Apply the method to the inverse operation (splitting cells)
- Apply in an application case: animation
- Parallelization

GARBAGE

ATTACHMENTS

Sparse matrices representation schemes

CCS : \begin{tabular}{ccccccc|}
\hline Values \& 2 \& 4 \& 3 \& 1 \& 5

\hline | Row InDex |
| :---: |
| Column |
| Start index | \& 1 \& 0 \& 1 \& 2 \& 0 \& 1

\hline
\end{tabular}

ANALYSIS : SPATIAL COMPLEXITY EVOLUTION ON COMPLEXES

\varnothing
\longleftrightarrow

γ

5

PROPOSED SOLUTION

Implicit identity

