Scaffolding skeletons using spherical Voronoi diagrams: feasibility, regularity and symmetry.

A.J. Fuentes Suárez E. Hubert

Inria Sophia Antipolis Mediterraneé Université Côte d'Azur

HAL: https://hal.inria.fr/hal-01774909v1

Outline

Outline

1 Introduction

2 Scaffolds

3 Models & Existence

4 Algorithms

Premises

Skeleton: finite set of spatial line segments that do not intersect except at endpoints.

The skeleton S naturally defines a graph $G_S = (\mathcal{E}_S, \mathcal{V}_S)$ embedded in \mathbb{R}^3 .

Scaffold: coarse quad mesh that *tightly follows* the structure of the skeleton. (informal definition)

Motivation: an intermediate step in many applications

Architecture [SMA05]

Subdivision surface [BMW12]

Semi-regular quad meshing [ULP+15]

Bi-quartic surfaces [KP16]

Previous work

 Construct a pipe with a polygonal cross profile, then "stitch" the pipes at the joints [SMA05, JLW10].

Partition a cube at joints, then extrude quadrilateral "tubes" connecting the extremities of each edge [YCJL09, ULP⁺15].

Partition a sphere at joints into cells, then construct a tubular structure connecting the two cells of each edge [BMW12].

Previous work

- Construct a pipe with a polygonal cross profile, then "stitch" the pipes at the joints [SMA05, JLW10].
- Partition a cube at joints, then extrude quadrilateral "tubes" connecting the extremities of each edge [YCJL09, ULP+15].

Partition a sphere at joints into cells, then construct a tubular structure connecting the two cells of each edge [BMW12].

Previous work

- Construct a pipe with a polygonal cross profile, then "stitch" the pipes at the joints [SMA05, JLW10].
- Partition a cube at joints, then extrude quadrilateral "tubes" connecting the extremities of each edge [YCJL09, ULP+15].
- Partition a sphere at joints into cells, then construct a tubular structure connecting the two cells of each edge [BMW12].

Difficulties in previous methods

Usai *et al.* [ULP⁺15] & Yao *et al.* [YCJL09]: "lids", spurious quads around joints

Problem: "lid" position, extra quads

- Symmetries.
- Optimality.

Our solution

Difficulties in previous methods

- Cycles.
- Symmetries.
- Optimality.

Difficulties in previous methods

*Similar scaffolds were used in [KP16] for the construction of bi-quartic surfaces.

Scaffolding method: the outline

Skeleton to Quad dominant Mesh (SQM) method [BMW12].

Construction of a scaffold as a three-step process

- Partition spheres at joints, one region per incident edge.
 spherical Voronoi diagrams.
- Obscretize regions into cells (points on the boundary). subdivide the boundary of a Voronoi region into a polyline
- Link points on the cells relative to the same edge.

Constraint

The two cells of every edge must have the same number of points.

Scaffolding method: the outline

Skeleton to Quad dominant Mesh (SQM) method [BMW12].

Construction of a scaffold as a three-step process

- Partition spheres at joints, one region per incident edge.
 spherical Voronoi diagrams.
- Obscretize regions into cells (points on the boundary).
 - subdivide the boundary of a Voronoi region into a polyline.
- S Link points on the cells relative to the same edge.
 - pair points minimizing length.

Constraint

The two cells of every edge must have the same number of points.

Scaffolding method: the outline

Skeleton to Quad dominant Mesh (SQM) method [BMW12].

Construction of a scaffold as a three-step process

- Partition spheres at joints, one region per incident edge.
 spherical Voronoi diagrams.
- Obscretize regions into cells (points on the boundary).
 - subdivide the boundary of a Voronoi region into a polyline.
- Ink points on the cells relative to the same edge.
 - pair points minimizing length.

Constraint

The two cells of every edge must have the same number of points.

Outline

Scaffold cells

Scaffold, formalization

Scaffold: is a pair (P_S, Φ_S) , such that

- $P_S = \{C_v \mid v \in \mathcal{V}_S\}$, where each $C_v = \{C_e^v \mid e \in \mathcal{E}_S, e \multimap v\}$ is a family of *cells* representing a partition of \mathbb{S}_v according to $Vor(\mathcal{A}_v)$.
- **●** Φ_S = {φ_e | e ∈ E_S} is a family of bijections φ_e between C^a_e and C^b_e for e = ab.

 $C_e^a = \langle p_0, p_2, \dots, p_n \rangle$, gives quads $\langle p_i, \phi_e(p_i), \phi_e(p_{i+1}), p_{i+1} \rangle \ i = 1, 2 \dots n$.

Regular scaffold: all the cells have the same number of points.

Symmetric scaffold: respects all the symmetries $T \in \mathcal{T}_S$.

Skeleton symmetry: an isometry $T : \mathbb{R}^3 \to \mathbb{R}^3$ that maps elements of $G_S(\mathcal{V}_S, \mathcal{E}_S)$ to elements of G_S .

A scaffold respects the skeleton symmetry T if:

- Symmetric cells: $C_{T(e)}^{T(v)} = T(C_e^v)$ for all cells C_e^v .
- Symmetric links: $\phi_{T(e)} = T \circ \phi_e \circ T^{-1}$ for all edges e.

 \mathcal{T}_S is the group generated by some symmetries of S.

Regular scaffold: all the cells have the same number of points.

Symmetric scaffold: respects all the symmetries $T \in \mathcal{T}_S$.

Skeleton symmetry: an isometry $T : \mathbb{R}^3 \to \mathbb{R}^3$ that maps elements of $G_S(\mathcal{V}_S, \mathcal{E}_S)$ to elements of G_S .

A scaffold respects the skeleton symmetry T if:

- Symmetric cells: $C_{T(e)}^{T(v)} = T(C_e^v)$ for all cells C_e^v .
- Symmetric links: $\phi_{T(e)} = T \circ \phi_e \circ T^{-1}$ for all edges e.

 \mathcal{T}_S is the group generated by some symmetries of S.

Regularity vs Symmetry

Outline

4 Algorithms

Spherical Voronoi diagram and arc subdivisions

- Del(A_v): Delaunay triangulation of A_v , dual of Vor(A_v), equivalent to the convex hull of A_v [GM01].
- E_v edges of $Del(A_v) \equiv arcs$ on the boundaries of $Vor(A_v)$.
- x_f^v number of segments in the subdivision of the arc $f \in E_v$.
- $|C_e^v| = \sum_{\substack{f \in E_v \\ f \multimap (\mathbb{S}_v \cap e)}} x_f^v$ the number of points in the cell C_e^v .

Compatibility constraints & Model

- $|C_e^a| = |C_e^b|$ for each skeleton edge e = ab (Compatibility constraint).
- $x_f^v \ge 1$ each arc on the boundary of Voronoi regions must be represented by at least one segment.
- $\Lambda_i(x_f^v) \ge s_i$ extra constraints imposed on the minimal number of points in cells or arcs (linear forms on x_f^v with nonnegative coefficients, and constants $s_i > 0$).

Model

$$\sum_{\substack{h \in E_a \\ h \to (\mathbb{S}_a \cap e)}} x_h^a = \sum_{\substack{g \in E_b \\ g \to (\mathbb{S}_b \cap e)}} x_g^b \quad \forall e = ab \in \mathcal{E}_S.$$

$$x_f^v \in \mathbb{Z}, \ x_f^v \ge 1 \qquad \forall f \in E_v, v \in \mathcal{V}_S$$

$$\Lambda_i(x_f^v) \ge s_i \qquad i = 1, 2, \dots$$

Some choices for Λ_i

• Minimal number of points on cells.

• Minimal number of segments on arcs.

- $|C_e^v| = q$ for all the skeleton edges e.
- q integer variable, number of points on each cell (cross profile: q = 4 quadrilateral, q = 3 triangular...)

Model (Regular)

$$\sum_{\substack{h \in E_v \\ h \to (\mathbb{S}_v \cap e)}} x_h^v = q \qquad \forall v \in \mathcal{V}_S, e \in \mathcal{E}_S, e \multimap v$$
$$x_f^v, q \in \mathbb{Z}, \ x_f^v \ge 1 \quad \forall f \in E_v, v \in \mathcal{V}_S$$
$$\Lambda_i(x_f^v) \ge s_i \qquad i = 1, 2, \dots$$

Voronoi diagram commutes with symmetry:

$$\begin{array}{c|c} \mathcal{A}_v & \xrightarrow{T} & \mathcal{A}_{T(v)} \\ Vor & \bigvee & Vor \\ Vor(\mathcal{A}_v) & \xrightarrow{T} & T(Vor(\mathcal{A}_v)) = Vor(\mathcal{A}_{T(v)}) \end{array}$$

In a symmetric scaffold:

$$x_f^v = x_{T(f)}^{T(v)} \quad \forall T \in \mathcal{T}_S.$$

This condition is also sufficient if the arcs are discretized into equal-length segments.

Existence of scaffolds

Theorem (Existence of regular symmetric scaffolds)

Given a skeleton S admitting the set of symmetries \mathcal{T}_S , there exist a solution (\bar{x}_f^v,\bar{q}) to

$$\sum_{\substack{h \in E_v \\ h \to (\mathbb{S}_v \cap e)}} x_h^v = q \qquad \forall v \in \mathcal{V}_S, e \in \mathcal{E}_S, e \multimap v$$
$$x_f^v, q \in \mathbb{Z}, \ x_f^v \ge 1 \quad \forall f \in E_v, v \in \mathcal{V}_S$$
$$\Lambda_i(x_f^v) \ge s_i \qquad i = 1, 2, \dots$$

Satisfying

$$x_f^v = x_{T(f)}^{T(v)} \quad \forall T \in \mathcal{T}_S, v \in \mathcal{V}_S, f \in E_v.$$

Existence of scaffolds (preliminary results)

Lemma (Locally uniform discretization) For $v \in \mathcal{V}_S$, the local system $\sum_{\substack{f \in E_v \\ f \multimap (\mathbb{S}_v \cap e)}} x_f^v = \lambda_v \quad \forall e \multimap v, e \in \mathcal{E}_S$ has a solution $(\tilde{x}_f^v, \tilde{\lambda}_v)$ with positive integer entries.

Proof.

- Del(A_v) is equivalent to the convex hull of A_v , which is an inscribed polyhedron.
- Positive real solution with $\lambda_v = 1$ is guaranteed by a numerical characterization of graphs of inscribable type due to Rivin [Riv96].
- A homogeneous linear system with integer coefficients has a positive integer solution whenever it has a positive real solution.

Proof of theorem (Existence of scaffolds).

- For each node $v \in \mathcal{V}_S$ take the local solution $(\tilde{x}_f^v, \tilde{\lambda}_v)$ guaranteed by the locally uniform discretization lemma.
- Multiply each local solution by a (different) positive integer such that all the cells have the same number of points and the Λ_i constraints are satisfied.

 $\hat{x}_f^v = s \frac{\lambda}{\lambda_v} \tilde{x}_f^v$, where $\hat{\lambda} = \prod_{u \in \mathcal{V}_S} \tilde{\lambda}_u$ and $s = \max_i s_i$.

 Once we have a regular solution we can symmetrize it by summing over the orbit of symmetries.

> $ar{x} = \sum_{T \in \mathcal{T}_S} \hat{x}_{T(f)}^{I(v)}$, then $ar{x}_{T(f)}^{T(v)} = \sum_{R \in \mathcal{T}_S} \hat{x}_{RT(f)}^{RT(v)} = \sum_{R \in \mathcal{T}_S} \hat{x}_{R(f)}^{R(v)} = ar{x}_f^v.$

 $|\bar{C}_e^v| = \bar{q} = s\hat{\lambda}|\mathcal{T}_S|.$

Proof of theorem (Existence of scaffolds).

- For each node $v \in \mathcal{V}_S$ take the local solution $(\tilde{x}_f^v, \tilde{\lambda}_v)$ guaranteed by the locally uniform discretization lemma.
- Multiply each local solution by a (different) positive integer such that all the cells have the same number of points and the Λ_i constraints are satisfied.

$$\hat{x}_{f}^{v} = s \frac{\hat{\lambda}}{\hat{\lambda}_{v}} \tilde{x}_{f}^{v}$$
, where $\hat{\lambda} = \prod_{u \in \mathcal{V}_{S}} \tilde{\lambda}_{u}$ and $s = \max_{i} s_{i}$.

 $|\hat{C}_e^v| = s\hat{\lambda}$ holds, the factors $s\hat{\lambda}/\tilde{\lambda}_v$ guarantee the Λ_i constraints.

 Once we have a regular solution we can symmetrize it by summing over the orbit of symmetries.

$$\begin{split} \bar{x}_{f}^{v} &= \sum_{T \in \mathcal{T}_{S}} \hat{x}_{T(f)}^{T(v)}, \text{ then} \\ \bar{x}_{T(f)}^{T(v)} &= \sum_{R \in \mathcal{T}_{S}} \hat{x}_{RT(f)}^{RT(v)} = \sum_{R \in \mathcal{T}_{S}} \hat{x}_{R(f)}^{R(v)} = \bar{x}_{f}^{v}. \\ &|\bar{C}_{e}^{v}| = \bar{q} = s\hat{\lambda} |\mathcal{T}_{S}|. \end{split}$$

Outline

Introduction

3 Models & Existence

Computing a scaffold using Integer Linear Programming

• Optimal solution minimizing the number of quads can be found using Integer Linear Programming with the objective function:

$$Q = \sum_{v \in (\mathcal{V}_S - L_S)} \sum_{f \in E_v} 2x_f^v + \sum_{v \in L_S} \sum_{f \in E_v} x_f^v,$$

 L_S nodes of G_S with only one incident edge.

• Number of quads in the scaffold given by

$$\frac{1}{2}\left(Q+\Xi_S\right),\,$$

Ξ_S a constant that only depends on the skeleton S.
Existence of Scaffolds guarantees a solution.

General algorithm for constructing a scaffold

Input: The set of nodes V_S and edges \mathcal{E}_S of the skeleton. **Output:** The quads that represent a scaffold.

- **1** For each node $v \in \mathcal{V}_S$ define:
 - \mathcal{A}_v the intersection of \mathbb{S}_v with edges incident to v.
 - \mathcal{H}_v convex hull of \mathcal{A}_v .
 - E_v edges of \mathcal{H}_v .
- 2 Define and solve the linear program on x_f^v that gives compatible cells.
- Ompute points on each cell. (Subdivide arcs into equal-length cords)
- Of Define bijections of linked cells. (Minimizing total length)
- Output the quads of the scaffold:
 - ▶ For each edge e = ab, let $C_e^a = \langle p_0, p_2, \dots, p_n \rangle$, for $i = 1, 2 \dots n$: Output quad $\langle p_i, \phi_e(p_i), \phi_e(p_{i+1}), p_{i+1} \rangle$

Algorithm to compute subdivisions

Input: Nodes \mathcal{V}_S and edges \mathcal{E}_S , along with E_v for each $v \in \mathcal{V}_S$. **Output:** x_f^v representing the subdivisions for each arc.

Initialize the linear program *IP*.

- **2** For each node $v \in \mathcal{V}_S$, and edge $f \in E_v$:
 - Add integer variable x_f^v to IP with restriction $x_f^v \ge 1$.
 - If the arc associated to x_f^v has length $\geq \frac{5\pi}{6}$: Add restriction $x_f^v \geq 2$.
- For each cell C_e^v :

▶ Add: $\sum_{\substack{f \in E_v \\ f \multimap (e \cap S_v)}} x_f^v \ge 4$. (At least quadrangular cross profile)

• For each edge $e \in \mathcal{E}_S$:

► Add: $\sum_{\substack{g \in E_a \\ g \multimap (e \cap \mathbb{S}_v)}} x_g^a = \sum_{\substack{h \in E_b \\ h \multimap (e \cap \mathbb{S}_v)}} x_h^b$. (For regularity two eq. with RHS q)

For symmetry there are other extra restrictions.

Solve *IP* minimizing: $\sum_{v \in (\mathcal{V}_S - L_S)} \sum_{f \in E_v} 2x_f^v + \sum_{v \in L_S} \sum_{f \in E_v} x_f^v$.

Thank you

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 675789.

References

- [BMW12] J.A. Bærentzen, M.K. Misztal, and K. Wełnicka, *Converting skeletal structures to quad dominant meshes*, Computers & Graphics 36 (2012), no. 5, 555–561, Shape Modeling International (SMI) Conference 2012.
- [GM01] Clara I. Grima and Alberto Márquez, *Computational geometry on surfaces*, Springer Netherlands, Dordrecht, 2001.
- [JLW10] Zhongping Ji, Ligang Liu, and Yigang Wang, B-mesh: A modeling system for base meshes of 3d articulated shapes, Computer Graphics Forum 29 (2010), no. 7, 2169–2177.
- [KP16] K. Karčiauskas and J. Peters, Curvature continuous bi-4 constructions for scaffoldand sphere-like surfaces, CAD Computer Aided Design 78 (2016), 48–59.
- [PRZ17] Julian Panetta, Abtin Rahimian, and Denis Zorin, Worst-case stress relief for microstructures, ACM Transactions on Graphics 36 (2017), no. 4, 1–16.
- [PZM+15] Julian Panetta, Qingnan Zhou, Luigi Malomo, Nico Pietroni, Paolo Cignoni, and Denis Zorin, *Elastic textures for additive fabrication*, ACM Transactions on Graphics 34 (2015), no. 4, 135:1–135:12.
- [Riv96] Igor Rivin, A characterization of ideal polyhedra in hyperbolic 3-space, Annals of Mathematics 143 (1996), 51–70.
- [SMA05] Vinod Srinivasan, Esan Mandal, and Ergun Akleman, Solidifying wireframes, Bridges: Mathematical Connections in Art, Music, and Science 2004 (Banf), 2005.

 [ULP+15]
 Francesco Usai, Marco Livesu, Enrico Puppo, Marco Tarini, and Riccardo Scateni,

 A.J. Fuentes Suárez E. Hubert (INRIA)
 Scaffolding skeletons with Voronoi diagrams
 JGA 2019
 28 / 28

Implementation

Libraries

Skelton: C++, (LGPL)
https://gitlab.inria.fr/afuentes/skelton
PySkelton: Python, (AGPL)
https://gitlab.inria.fr/afuentes/pyskelton

General workflow:

- Create or load a skeleton graph.
- Define properties of the scaffolder (min cell quads, max arc angle, symmetries).
- Compute scaffold.
- Show/Save output.

Material design

(From [PZM+15, PRZ17])

- Highly symmetric shape.
- Surface mesh.
- Volumetric mesh.

Other skeletons with cycles

Random skeleton

Scaffold

Timings

1398 ms
37 ms
209 ms
1152 ms
62 ms

Scaffold	
Nodes	100
Edges	605
Quads	3327
Quads (reg.)	13310
Cross prof. (reg.)	22 sides

Linear Programs

Variables	2932
Equations	605
Variables (reg.)	2933
Equations (reg.)	1210