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Premises

Skeleton

−−−−−−−→

Scaffold

Skeleton: finite set of spatial line segments that do not intersect except at
endpoints.

The skeleton S naturally defines a graph GS = (ES ,VS) embedded in R3.

Scaffold: coarse quad mesh that tightly follows the structure of the
skeleton. (informal definition)
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Motivation: an intermediate step in many applications

Sculpting [JLW10]

Compatible quadrangulation [YCJL09]

Architecture [SMA05]

Subdivision surface [BMW12]

Semi-regular quad meshing [ULP+15]

Bi-quartic surfaces [KP16]
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Previous work

Triangular faces

1 Construct a pipe with a polygonal cross profile, then “stitch” the
pipes at the joints [SMA05, JLW10].

2 Partition a cube at joints, then extrude quadrilateral “tubes”
connecting the extremities of each edge [YCJL09, ULP+15].

3 Partition a sphere at joints into cells, then construct a tubular
structure connecting the two cells of each edge [BMW12].
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Difficulties in previous methods

Usai et al. [ULP+15] & Yao et al. [YCJL09]:
“lids”, spurious quads around joints

Problem: “lid” position, extra quads

Cycles.

Symmetries.

Optimality.

Our solution
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Skeleton without cycles
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A.J. Fuentes Suárez E. Hubert (INRIA) Scaffolding skeletons with Voronoi diagrams JGA 2019 7 / 28



Why symmetry?

Scaffold
(no symmetries)

Symmetric scaffold
(many symmetries)

Rotation symmetry

∗Similar scaffolds were used in [KP16] for the construction of bi-quartic surfaces.
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Scaffolding method: the outline

Skeleton to Quad dominant Mesh (SQM) method [BMW12].

Construction of a scaffold as a three-step process

1 Partition spheres at joints, one region per incident edge.
I spherical Voronoi diagrams.

2 Discretize regions into cells (points on the boundary).
I subdivide the boundary of a Voronoi region into a polyline.

3 Link points on the cells relative to the same edge.
I pair points minimizing length.

Constraint

The two cells of every edge must have the same number of points.
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Scaffold cells

v
e

S  GS(VS , ES)
v ∈ VS e ∈ ES
e incident to v

Sv

v e ∩ Sv

Sv sphere
centered at v

Av =
{e ∩ Sv |e( v}

v
e

Re
v

Vor(Av) Voronoi
diagram of Av

Re
v region around

e ∩ Sv

Ce
v

Ce
v cell

discretization of
Re

v
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Scaffold, formalization

Scaffold: is a pair (PS ,ΦS), such that

1 PS = {Cv | v ∈ VS}, where each Cv = {Cv
e | e ∈ ES , e( v} is a

family of cells representing a partition of Sv according to Vor(Av).

2 ΦS = {φe | e ∈ ES} is a family of bijections φe between Ca
e and Cb

e

for e = ab.

aCa
e b Cb

ee = ab

p2 φe(p2)

p1 φe(p1)

Quad 〈p1, φe(p1), φe(p2), p2〉

Ca
e = 〈p0, p2, . . . , pn〉, gives quads 〈pi, φe(pi), φe(pi+1), pi+1〉 i = 1, 2 . . . n.
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Regularity & Symmetry

Regular scaffold: all the cells have the same number of points.

Symmetric scaffold: respects all the symmetries T ∈ TS .

Skeleton symmetry: an isometry T : R3 → R3 that maps elements of
GS(VS , ES) to elements of GS .

A scaffold respects the skeleton symmetry T if:

Symmetric cells: C
T (v)
T (e) = T (Cv

e ) for all cells Cv
e .

Symmetric links: φT (e) = T ◦ φe ◦ T−1 for all edges e.

TS is the group generated by some symmetries of S.
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Regularity vs Symmetry

Asymmetric
cells

Regular asymmetric

Symmetric irregular.
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Spherical Voronoi diagram and arc subdivisions

Del(Av): Delaunay triangulation of Av, dual of Vor(Av), equivalent
to the convex hull of Av [GM01].

Ev edges of Del(Av) ≡ arcs on the boundaries of Vor(Av).

xvf number of segments in the subdivision of the arc f ∈ Ev.

|Cv
e | =

∑
f∈Ev

f((Sv∩e)

xvf the number of points in the cell Cv
e .

e

v

Cells from Vor(Av).

e f

Convex hull of Av.

f

xvf = 2

v

Sv ∩ e

Del(Av).
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Compatibility constraints & Model

|Ca
e | = |Cb

e | for each skeleton edge e = ab (Compatibility
constraint).

xvf ≥ 1 each arc on the boundary of Voronoi regions must be
represented by at least one segment.

Λi(x
v
f ) ≥ si extra constraints imposed on the minimal number of

points in cells or arcs (linear forms on xvf with nonnegative
coefficients, and constants si > 0).

Model 

∑
h∈Ea

h((Sa∩e)

xah =
∑

g∈Eb
g((Sb∩e)

xbg ∀e = ab ∈ ES .

xvf ∈ Z, xvf ≥ 1 ∀f ∈ Ev, v ∈ VS
Λi(x

v
f ) ≥ si i = 1, 2, ...
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Some choices for Λi

Minimal number of points on
cells.

|Cv
e | ≥ 4
xvf ≥ 1

|Cv
e | ≥ 3
xvf ≥ 1

Minimal number of segments on
arcs.

degenerate
case!

xvf ≥ 1
|Cv

e | ≥ 4

xvf ≥ 2
|Cv

e | ≥ 4
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Regular scaffold

|Cv
e | = q for all the skeleton edges e.

q integer variable, number of points on each cell (cross profile:
q = 4 quadrilateral, q = 3 triangular...)

Model (Regular)

∑
h∈Ev

h((Sv∩e)

xvh = q ∀v ∈ VS , e ∈ ES , e( v.

xvf , q ∈ Z, xvf ≥ 1 ∀f ∈ Ev, v ∈ VS
Λi(x

v
f ) ≥ si i = 1, 2, ...
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Symmetric model

Voronoi diagram commutes with symmetry:

Av AT (v)

Vor(Av) T (Vor(Av)) = Vor(AT (v))

T

VorVor

T

In a symmetric scaffold:

xvf = x
T (v)
T (f) ∀T ∈ TS .

This condition is also sufficient if the arcs are discretized into equal-length
segments.
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Existence of scaffolds

Theorem (Existence of regular symmetric scaffolds)

Given a skeleton S admitting the set of symmetries TS , there exist a
solution (x̄vf , q̄) to

∑
h∈Ev

h((Sv∩e)

xvh = q ∀v ∈ VS , e ∈ ES , e( v.

xvf , q ∈ Z, xvf ≥ 1 ∀f ∈ Ev, v ∈ VS
Λi(x

v
f ) ≥ si i = 1, 2, ...

Satisfying

xvf = x
T (v)
T (f) ∀T ∈ TS , v ∈ VS , f ∈ Ev.
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Existence of scaffolds (preliminary results)

Lemma (Locally uniform discretization)

For v ∈ VS , the local system∑
f∈Ev

f((Sv∩e)

xvf = λv ∀e( v, e ∈ ES

has a solution (x̃vf , λ̃v) with positive integer entries.

Proof.

Del(Av) is equivalent to the convex hull of Av, which is an inscribed
polyhedron.

Positive real solution with λv = 1 is guaranteed by a numerical
characterization of graphs of inscribable type due to Rivin [Riv96].

A homogeneous linear system with integer coefficients has a positive
integer solution whenever it has a positive real solution.
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Existence of scaffolds (proof)

Proof of theorem (Existence of scaffolds).

For each node v ∈ VS take the local solution (x̃vf ,λ̃v) guaranteed by
the locally uniform discretization lemma.

Multiply each local solution by a (different) positive integer such that
all the cells have the same number of points and the Λi constraints
are satisfied.

I x̂vf = s λ̂
λ̃v
x̃vf , where λ̂ =

∏
u∈VS

λ̃u and s = maxi si.

I |Ĉve | = sλ̂ holds, the factors sλ̂/λ̃v guarantee the Λi constraints.

Once we have a regular solution we can symmetrize it by summing
over the orbit of symmetries.

I x̄vf =
∑
T∈TS

x̂
T (v)
T (f), then

x̄
T (v)
T (f) =

∑
R∈TS

x̂
RT (v)
RT (f) =

∑
R∈TS

x̂
R(v)
R(f) = x̄vf .

I |C̄ve | = q̄ = sλ̂|TS |.
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Computing a scaffold using Integer Linear Programming

Optimal solution minimizing the number of quads can be found using
Integer Linear Programming with the objective function:

Q =
∑

v∈(VS−LS)

∑
f∈Ev

2xvf +
∑
v∈LS

∑
f∈Ev

xvf ,

LS nodes of GS with only one incident edge.

Number of quads in the scaffold given by

1
2 (Q+ ΞS) ,

ΞS a constant that only depends on the skeleton S.

Existence of Scaffolds guarantees a solution.
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General algorithm for constructing a scaffold

Input: The set of nodes VS and edges ES of the skeleton.
Output: The quads that represent a scaffold.

1 For each node v ∈ VS define:
I Av the intersection of Sv with edges incident to v.
I Hv convex hull of Av.
I Ev edges of Hv.

2 Define and solve the linear program on xvf that gives compatible cells.

3 Compute points on each cell. (Subdivide arcs into equal-length cords)

4 Define bijections of linked cells. (Minimizing total length)
5 Output the quads of the scaffold:

I For each edge e = ab, let Cae = 〈p0, p2, . . . , pn〉, for i = 1, 2 . . . n:
Output quad 〈pi, φe(pi), φe(pi+1), pi+1〉
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Algorithm to compute subdivisions

Input: Nodes VS and edges ES , along with Ev for each v ∈ VS .
Output: xvf representing the subdivisions for each arc.

1 Initialize the linear program IP .
2 For each node v ∈ VS , and edge f ∈ Ev:

I Add integer variable xvf to IP with restriction xvf ≥ 1.
I If the arc associated to xvf has length ≥ 5π

6 : Add restriction xvf ≥ 2.

3 For each cell Cv
e :

I Add:
∑
f∈Ev

f((e∩Sv)

xvf ≥ 4. (At least quadrangular cross profile)

4 For each edge e ∈ ES :
I Add:

∑
g∈Ea

g((e∩Sv)

xag =
∑
h∈Eb

h((e∩Sv)

xbh. (For regularity two eq. with RHS q)

I For symmetry there are other extra restrictions.

5 Solve IP minimizing:
∑

v∈(VS−LS)

∑
f∈Ev

2xvf +
∑

v∈LS

∑
f∈Ev

xvf .
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Thank you
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A.J. Fuentes Suárez E. Hubert (INRIA) Scaffolding skeletons with Voronoi diagrams JGA 2019 28 / 28



References

[BMW12] J.A. Bærentzen, M.K. Misztal, and K. We lnicka, Converting skeletal structures to
quad dominant meshes, Computers & Graphics 36 (2012), no. 5, 555–561, Shape
Modeling International (SMI) Conference 2012.

[GM01] Clara I. Grima and Alberto Márquez, Computational geometry on surfaces, Springer
Netherlands, Dordrecht, 2001.

[JLW10] Zhongping Ji, Ligang Liu, and Yigang Wang, B-mesh: A modeling system for base
meshes of 3d articulated shapes, Computer Graphics Forum 29 (2010), no. 7,
2169–2177.
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Implementation

Libraries

Skelton: C++, (LGPL)
https://gitlab.inria.fr/afuentes/skelton

PySkelton: Python, (AGPL)
https://gitlab.inria.fr/afuentes/pyskelton

General workflow:

Create or load a skeleton graph.

Define properties of the scaffolder (min cell quads, max arc angle,
symmetries).

Compute scaffold.

Show/Save output.

https://gitlab.inria.fr/afuentes/skelton
https://gitlab.inria.fr/afuentes/pyskelton


Material design

(From [PZM+15, PRZ17])

Highly symmetric shape.

Surface mesh.

Volumetric mesh.



Material design



Rotation symmetry

Other skeletons with cycles Random skeleton



Scaffold

Timings

Total 1398 ms
LP Solver 37 ms
Convex Hulls 209 ms
Other 1152 ms
LP Solver (reg.) 62 ms

Scaffold

Nodes 100
Edges 605
Quads 3327
Quads (reg.) 13310
Cross prof. (reg.) 22 sides

Linear Programs

Variables 2932
Equations 605
Variables (reg.) 2933
Equations (reg.) 1210
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