

Half Θ_{6} graph

2-1

Half Θ_{6} graph

2-2

Half Θ_{6} graph

\qquad

2-3

Half Θ_{6} graph

2-4

Half Θ_{6} graph

Θ_{6} graph

Θ rouṭing

Θ rouṭing

source

4-2

Θ rouṭing

source

4-3

Θ rouṭing

source

4-4
Θ rouṭing

source

4-5
Θ rouṭing

source

4-6
Θ rouṭing

source

4-7
Θ rouṭing

source

4-8
Θ routing

5-1
Θ routing

5-2
Θ routing

5-3
Θ routing

Next point is closer Routing terminates

5-4
Θ routing

6-1

Θ routing

6-2

Θ routing

6-3

Θ routing

6-4

Θ routing

6-5

Θ routing

6-6

Θ routing

Unbounded length

6-7

$\dot{\Theta}$ routing

Expected length for Poisson distribution •

$\dot{\Theta}$ routing

Expected length for Poisson distribution •

Routing in half Θ_{6}

Positive routing

Negative routing

Routing in half Θ_{6}

Positive routing ≤ 2

Negative routing $\quad \leq \frac{5}{\sqrt{3}} \simeq 2.89$
[Bose, Fagerberg, van Renssen, Verdonschot]

8-2

Our contribution

Two tools: forward routing and side routing New negative routing algorithms
same worst-case bound

Probabilistic analysis for Poisson distribution
positive routing
new negative routings

Forward rout

Side routing

Given target, direction, edge crossing from - to +

11-1

Side routing

Given target, direction, edge crossing from - to +

11-2

Side routing

Given target, direction, edge crossing from - to + Use boundary of triangles crossing the ray

$11-3$

Side routing

Given target, direction, edge crossing from - to +
Use boundary of triangles crossing the ray

Bicolor path, empty certifying triangles aligned on ray

11-4

Side routing

Given target, direction, edge crossing from - to + Use boundary of triangles crossing the ray

11-5
upper bound on the length of the path

Side routing

Given target, direction, edge crossing from - to + Use boundary of triangles crossing the ray

11-6 upper bound on the length of the path
≤ 2

Side routing

Does not work from +
Given target, direction, edge crossing from - to $+{ }^{\text {to }}$ -
Use boundary of triangles crossing the ray

11-7

Side routing
Does not work from +
Given target, direction, edge crossing from - to + $+{ }^{\text {to }}$
Use boundary of triangles crossing the ray

cannot use circumtriangle to bound length

11-8

Side routing
Does not work from +
Given target, direction, edge crossing from - to $+{ }^{\text {to - }}$
Use boundary of triangles crossing the ray

cannot use circumtriangle to bound length path is not bicolor
11-9

Positive routing

12-1

Positive routing

12-2

Positive routing

Forward routing

12-3

Positive routing

Forward routing

+ Side routing

12-4

Positive routing

Forward routing

+ Side routing
Length=

12-5

Positive routing

Forward routing

+ Side routing

12-6

Positive routing

Forward routing

+ Side routing

12-7

Positive routing

Forward routing

+ Side routing Length $=\sharp+2 \times \leadsto$

Stretch ≤ 2

12-8

Negative routing

13-1

Negative routing

$13-2$

Negative routing
wlog $\nabla \leq \nabla$

$13-3$

Negative routing

wlog $\nabla \leq \nabla$

13-4

Negative routing

wlog $\nabla \leq \nabla$

13-5

Negative routing

wlog $\nabla \leq \nabla$

13-6

Negative routing

wlog $\nabla \leq \nabla$

13-7

Negative routing

$$
w \log \nabla \leq \nabla
$$

13-8

Negative routing

$$
w \log \nabla \leq \nabla
$$

13-9

Negative routing

${ }^{w \log } \nabla \leq \nabla$

13-10

Negative routing
wlog $\nabla \leq \nabla$

13-11

Negative routing
wlog

$$
\nabla \leq \nabla
$$

13-12

Negative routing
wlog $\nabla \leq \nabla$

$13-13$

Negative routing
wlog $\nabla \leq \nabla$

13-14

Negative routing
wlog $\nabla \leq \nabla$

$13-15$

Memoryless negative routing

14-1

Memoryless negative routing

forward phase in green direction

14-2

Memoryless negative routing

forward phase in green direction side phase in redłblue direction

14-3

Memoryless negative routing

14-4

Memoryless negative routing

$14-5$

1-Memory negative routing

15-1

1-Memory negative routing

15-2

1-Memory negative routing

side phase in green-blue direction side phase in red-blue direction
$15-3$

1-Memory negative routing

side phase in green-blue direction side phase in red blue direction

Length \leq V

15-4

1-Memory negative routing

$$
\begin{aligned}
& \text { side phase in green- } \\
& \text { side phase in red } \\
& \text { Length } \leq \mathrm{V}+7
\end{aligned}
$$

$15-5$

Probabilistic analysis

Expected length?

16

Forward routing

17-1

Forward routing

With high probability

$17-2$

Forward routing

With high probability
stretch close to $\frac{\sqrt{3}}{12}(3 \ln 3+4)$
$17-3$

Forward routing

With high probability
stretch close to $\frac{\sqrt{3}}{12}(3 \ln 3+4)$
path terminates in a square of side $\tilde{O}\left(\lambda^{\frac{1}{4}}\right)$
17-4

Forward routing

Proof:

Independance
Expected slope of one edge

With high probability
stretch close to $\frac{\sqrt{3}}{12}(3 \ln 3+4)$
path terminates in a square of side $\tilde{O}\left(\lambda^{\frac{1}{4}}\right)$
17-5

Side routing

$18-1$

Side routing

With high probability

18-2

Side routing

With high probability
stretch close to $\frac{\sqrt{3}}{12}(3 \ln 3+4)$

18-3

Side routing

stretch close to $\frac{\sqrt{3}}{12}(3 \ln 3+4)$
Proof:

Θ_{6} routing

19-1

Θ_{6} routing

19-2

Θ_{6} routing

19-3

Positive routing

20-1

Positive routing

20-2

Positive routing

20-3

Memoryless negative routing

21-1

Memoryless negative routing

21-2

Memoryless negative routing

Forward + Side

$21-3$

1-Memory negative routing

22-1

1-Memory negative routing

22-2

1-Memory negative routing

Side + Side

$22-3$

Expected length (Poisson distribution)

Routing	Max on ϕ	Averaging on ϕ
Θ_{6}		
Positive		
Memoryless neg.		
1-Memory neg.		

24-1

Expected length (Poisson distribution)

Routing		Max on ϕ	Averaging on ϕ
Θ_{6}	∞		
Positive	2		
Memoryless neg.	$\frac{5}{\sqrt{3}}$		
1-Memory neg.			
\uparrow			
$24-2$			

Expected length (Poisson distribution)

Routing		Max on ϕ	Averaging on ϕ
Θ_{6}	∞	$\frac{1}{6}(3 \ln 3+4) \simeq 1.2160$	
Positive	2		
Memoryless neg	$\frac{5}{\sqrt{3}}$		
1-Memory neg.		$\frac{1}{6}(3 \ln 3+4) \simeq 1.2160$	
$24-3 \bigcap_{\text {Worst-case }}$			

Expected length (Poisson distribution)

Routing		Max on ϕ	Averaging on ϕ
Θ_{6}	∞	$\frac{1}{6}(3 \ln 3+4) \simeq 1.2160$	$\frac{1}{2 \pi}(3 \ln 3+4) \simeq 1.1612$
Positive	2		$\begin{array}{r} \frac{1}{\pi}(2 \sqrt{3}-3)(3 \ln 3+4) \\ \\ \\ \simeq 1.0778 \end{array}$
Memoryless neg.	$\frac{5}{\sqrt{3}}$		$\begin{array}{r} \left.\left.\begin{array}{c} \frac{3(\sqrt{3}-1)}{4 \pi}(3 \ln 3 \end{array}\right)+4\right) \\ \simeq 1.2751 \\ \hline \end{array}$
1-Memory neg.	2.89	$\frac{1}{6}(3 \ln 3+4) \simeq 1.2160$	$\frac{1}{2 \pi}(3 \ln 3+4) \simeq 1.1612$
$24-4 \bigcap_{\text {Worst-case }}$			

