Forbidden Patterns in Geometric Permutations by Combinatorial Lifting

Xavier Goaoc, Andreas Holmsen, Cyril Nicaud

n disjoint compact convex sets in \mathbb{R}^{d}
oriented line that intersects every set \rightarrow permutation (or ordering) of the sets

n disjoint compact convex sets in \mathbb{R}^{d}
oriented line that intersects every set \rightarrow permutation (or ordering) of the sets
n disjoint compact convex sets in \mathbb{R}^{d}
oriented line that intersects every set \rightarrow permutation (or ordering) of the sets

What is the maximum number $g_{d}(n)$ of permutations realizable on n sets in \mathbb{R}^{d} ?

n disjoint compact convex sets in \mathbb{R}^{d}
oriented line that intersects every set \rightarrow permutation (or ordering) of the sets

What is the maximum number $g_{d}(n)$ of permutations realizable on n sets in \mathbb{R}^{d} ?

$$
\begin{aligned}
& g_{2}(n)=2 n-2[1992] \\
& g_{d}(n)=O\left(n^{2 d-2}\right) \\
& g_{d}(n)=\Omega\left(n^{d-1}\right)[2002] \\
& g_{d}(n)=O\left(n^{2 d-3} \log n\right) \\
& \text { special cases are understood: balls, fatness, ... }
\end{aligned}
$$

Here: which triples of permutations can be realized simultaneously in \mathbb{R}^{3} ?

Simplest non-trivial constraints

Here: which triples of permutations can be realized simultaneously in \mathbb{R}^{3} ?

Simplest non-trivial constraints

Here: which triples of permutations can be realized simultaneously in \mathbb{R}^{3} ?

Simplest non-trivial constraints

Here: which triples of permutations can be realized simultaneously in \mathbb{R}^{3} ?

Simplest non-trivial constraints

Here: which triples of permutations can be realized simultaneously in \mathbb{R}^{3} ?

Simplest non-trivial constraints

Here: which triples of permutations can be realized simultaneously in \mathbb{R}^{3} ?

Simplest non-trivial constraints

Here: which triples of permutations can be realized simultaneously in \mathbb{R}^{3} ?

Simplest non-trivial constraints

We design an algorithm deciding this.
Implementation (~ 600 lines of python)

Here: which triples of permutations can be realized simultaneously in \mathbb{R}^{3} ?

Simplest non-trivial constraints

We design an algorithm deciding this.
Implementation (~ 600 lines of python)

Experimental results:
Theorem. Every triple of permutations on $n \leq 5$ elements is geometrically realizable in \mathbb{R}^{3}.

Here: which triples of permutations can be realized simultaneously in \mathbb{R}^{3} ?

Simplest non-trivial constraints

We design an algorithm deciding this.
Implementation (~ 600 lines of python)

Experimental results:
Theorem. Every triple of permutations on $n \leq 5$ elements is geometrically realizable in \mathbb{R}^{3}.

Theorem.

is impossible.

The computational problem

Geometric_Realisability_3D

Input: Three orders on $\{1,2, \ldots, n\}$

Output: Whether there exists n disjoint compact convex sets in \mathbb{R}^{3} and three lines intersecting them in these orders.

From geometry to algebra

Geometric normalization

Start with 3 lines and n disjoint compact convex sets realizing 3 given orders.

We can assume that the lines are pairwise skew.

Geometric normalization

Start with 3 lines and n disjoint compact convex sets realizing 3 given orders.

We can assume that the lines are pairwise skew.

Compactness
\Rightarrow we can thicken the sets
\Rightarrow we can perturb the lines

Start with 3 lines and n disjoint compact convex sets realizing 3 given orders.

We can assume that the lines are pairwise skew.

Compactness
\Rightarrow we can thicken the sets
\Rightarrow we can perturb the lines

We can crop the sets to triangles with vertices on the lines.

We can choose the lines (up to reversing some permutations).

Guigue-Devillers algorithm

$[p, q, r, s] \stackrel{\text { def }}{=} \operatorname{sign}\left|\begin{array}{cccc}x_{p} & x_{q} & x_{r} & x_{s} \\ y_{p} & y_{q} & y_{r} & y_{s} \\ z_{p} & z_{q} & z_{r} & z_{s} \\ 1 & 1 & 1 & 1\end{array}\right|$

Guigue-Devillers algorithm

(1) does the plane of a triangle separate the vertices of the other?

$$
\begin{array}{ll}
{\left[p_{1}, q_{1}, r_{1}, p_{2}\right]} & {\left[p_{2}, q_{2}, r_{2}, p_{1}\right]} \\
{\left[p_{1}, q_{1}, r_{1}, q_{2}\right]} & {\left[p_{2}, q_{2}, r_{2}, q_{1}\right]} \\
{\left[p_{1}, q_{1}, r_{1}, r_{2}\right]} & {\left[p_{2}, q_{2}, r_{2}, r_{1}\right]}
\end{array}
$$

$[p, q, r, s] \stackrel{\text { def }}{=} \operatorname{sign}\left|\begin{array}{cccc}x_{p} & x_{q} & x_{r} & x_{s} \\ y_{p} & y_{q} & y_{r} & y_{s} \\ z_{p} & z_{q} & z_{r} & z_{s} \\ 1 & 1 & 1 & 1\end{array}\right|$

Guigue-Devillers algorithm

(1) does the plane of a triangle separate the vertices of the other?

$$
\begin{array}{ll}
{\left[p_{1}, q_{1}, r_{1}, p_{2}\right]} & {\left[p_{2}, q_{2}, r_{2}, p_{1}\right]} \\
{\left[p_{1}, q_{1}, r_{1}, q_{2}\right]} & {\left[p_{2}, q_{2}, r_{2}, q_{1}\right]} \\
{\left[p_{1}, q_{1}, r_{1}, r_{2}\right]} & {\left[p_{2}, q_{2}, r_{2}, r_{1}\right]}
\end{array}
$$

(2) if not, each triangle meets the intersection of the two planes.
Do the two segments intersect?
rename p, q, r into a, b, c so that a is separated from $\{b, c\}$
$\left[a_{1}, b_{1}, a_{2}, b_{2}\right]=+1$ or $\left[a_{1}, c_{1}, c_{2}, a_{2}\right]=+1$
[Journal of graphics tools, 2003]

Guigue-Devillers algorithm

(1) does the plane of a triangle separate the vertices of the other?

$$
\begin{array}{ll}
{\left[p_{1}, q_{1}, r_{1}, p_{2}\right]} & {\left[p_{2}, q_{2}, r_{2}, p_{1}\right]} \\
{\left[p_{1}, q_{1}, r_{1}, q_{2}\right]} & {\left[p_{2}, q_{2}, r_{2}, q_{1}\right]} \\
{\left[p_{1}, q_{1}, r_{1}, r_{2}\right]} & {\left[p_{2}, q_{2}, r_{2}, r_{1}\right]}
\end{array}
$$

(2) if not, each triangle meets the intersection of the two planes.
Do the two segments intersect?
rename p, q, r into a, b, c so that a is separated from $\{b, c\}$
$\left[a_{1}, b_{1}, a_{2}, b_{2}\right]=+1$ or $\left[a_{1}, c_{1}, c_{2}, a_{2}\right]=+1$
[Journal of graphics tools, 2003]

Parameterize candidate realizations by $\mathbb{R}^{3 n}$

$$
i \text { th triangle }=\text { convex hull of }\left(\begin{array}{c}
x_{i} \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
y_{i} \\
1
\end{array}\right) \text { and }\left(\begin{array}{c}
1 \\
0 \\
z_{i}
\end{array}\right) .
$$

G-D algorithm \leftrightarrow polynomial decision tree
Orientation predicates are polynomials in the parameters.
The realizations form a semi-algebraic set S defined by $\Theta\left(n^{2}\right)$ inequations.

SEMI-ALGEBRAIC FORMULATION

Parameterize candidate realizations by $\mathbb{R}^{3 n}$

$$
i \text { th triangle }=\text { convex hull of }\left(\begin{array}{c}
x_{i} \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
y_{i} \\
1
\end{array}\right) \text { and }\left(\begin{array}{c}
1 \\
0 \\
z_{i}
\end{array}\right) .
$$

G-D algorithm \leftrightarrow polynomial decision tree

Orientation predicates are polynomials in the parameters.

The realizations form a semi-algebraic set S defined by $\Theta\left(n^{2}\right)$ inequations.

Testing emptiness of a semi-algebraic set
CAD, critical points method, ...
(number of polynomials \times maximum degree) $)^{O(\text { number of variables) }}$

From algebra to combinatorics

Inspiration: Veronese lifting

A trick to linearize problems on polynomials of degree $\leq k$ in \mathbb{R}^{d}

$$
\begin{aligned}
& \left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{R}^{d} \\
& \qquad \quad \begin{array}{l}
\left(x_{1}, x_{2}, \ldots, x_{d}, x_{1}^{2}, x_{1} x_{2},\right. \\
\\
\left.x_{1} x_{3}, \ldots, x_{d}^{2}, x_{1}^{3}, \ldots, x_{d}^{k}\right)
\end{array} \quad \in \mathbb{R}^{\binom{d+k}{d}}
\end{aligned}
$$

Inspiration: Veronese lifting

A trick to linearize problems on polynomials of degree $\leq k$ in \mathbb{R}^{d}

$$
\begin{aligned}
& \left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{R}^{d} \\
& \quad \mapsto \quad\left(x_{1}, x_{2}, \ldots, x_{d}, x_{1}^{2}, x_{1} x_{2},\right. \\
& \left.\quad x_{1} x_{3}, \ldots, x_{d}^{2}, x_{1}^{3}, \ldots, x_{d}^{k}\right)
\end{aligned} \quad \in \mathbb{R}^{\binom{d+k}{d}} . l .
$$

Theorem. Any d finite measures in \mathbb{R}^{d} can be simultaneously bisected by a hyperplane.

A trick to linearize problems on polynomials of degree $\leq k$ in \mathbb{R}^{d}

$$
\begin{aligned}
& \left(x_{1}, x_{2}, \ldots, x_{d}\right) \in \mathbb{R}^{d} \\
& \quad \mapsto \quad \begin{array}{l}
\left(x_{1}, x_{2}, \ldots, x_{d}, x_{1}^{2}, x_{1} x_{2},\right. \\
\left.x_{1} x_{3}, \ldots, x_{d}^{2}, x_{1}^{3}, \ldots, x_{d}^{k}\right)
\end{array} \in \mathbb{R}^{\binom{d+k}{d}}
\end{aligned}
$$

$\mathcal{M}_{2} \subset \mathbb{R}^{6}$

Theorem. Any d finite measures in \mathbb{R}^{d} can be simultaneously bisected by a hyperplane.

Theorem. Any $\binom{d+k}{d}$ finite measures in \mathbb{R}^{d} can be simultaneously bisected by the zero set of a polynomial of degree k.

FACTORIZING THE $\triangle \triangle$ PREDICATES

$$
X_{i}=\left(\begin{array}{c}
x_{i} \\
1 \\
0
\end{array}\right), Y_{i}=\left(\begin{array}{c}
0 \\
y_{i} \\
1
\end{array}\right) \text { and } Z_{i}=\left(\begin{array}{c}
1 \\
0 \\
z_{i}
\end{array}\right)
$$

$$
[p, q, r, s]=\operatorname{sign}\left|\begin{array}{cccc}
x_{p} & x_{q} & x_{r} & x_{s} \\
y_{p} & y_{q} & y_{r} & y_{s} \\
z_{p} & z_{q} & z_{r} & z_{s} \\
1 & 1 & 1 & 1
\end{array}\right|
$$

Orientation
$\left[X_{a}, X_{b}, Y_{c}, Y_{d}\right]$
$\left[X_{a}, X_{b}, Z_{c}, Z_{d}\right]$
$\left[Y_{a}, Y_{b}, Z_{c}, Z_{d}\right]$
$\left[X_{a}, X_{b}, Y_{c}, Z_{d}\right]$
$\left[X_{a}, Y_{b}, Y_{c}, Z_{d}\right]$
$\left[X_{a}, Y_{b}, Z_{c}, Z_{d}\right]$

FACTORIZING THE $\triangle \triangle$ PREDICATES

$$
X_{i}=\left(\begin{array}{c}
x_{i} \\
1 \\
0
\end{array}\right), Y_{i}=\left(\begin{array}{c}
0 \\
y_{i} \\
1
\end{array}\right) \text { and } Z_{i}=\left(\begin{array}{c}
1 \\
0 \\
z_{i}
\end{array}\right)
$$

$$
[p, q, r, s]=\operatorname{sign}\left|\begin{array}{cccc}
x_{p} & x_{q} & x_{r} & x_{s} \\
y_{p} & y_{q} & y_{r} & y_{s} \\
z_{p} & z_{q} & z_{r} & z_{s} \\
1 & 1 & 1 & 1
\end{array}\right|
$$

Orientation	Determinant
$\left[X_{a}, X_{b}, Y_{c}, Y_{d}\right]$	$\left(x_{a}-x_{b}\right)\left(y_{c}-y_{d}\right)$
$\left[X_{a}, X_{b}, Z_{c}, Z_{d}\right]$	$\left(x_{a}-x_{b}\right)\left(z_{c}-z_{d}\right)$
$\left[Y_{a}, Y_{b}, Z_{c}, Z_{d}\right]$	$\left(y_{a}-y_{b}\right)\left(z_{c}-z_{d}\right)$
$\left[X_{a}, X_{b}, Y_{c}, Z_{d}\right]$	$\left(x_{a}-x_{b}\right)\left(y_{c} z_{d}-z_{d}+1\right)$
$\left[X_{a}, Y_{b}, Y_{c}, Z_{d}\right]$	$\left(y_{b}-y_{c}\right)\left(x_{a}-x_{a} z_{d}-1\right)$
$\left[X_{a}, Y_{b}, Z_{c}, Z_{d}\right]$	$\left(z_{c}-z_{d}\right)\left(x_{a} y_{b}+1-y_{b}\right)$

FACTORIZING THE $\triangle \triangle$ PREDICATES

$$
X_{i}=\left(\begin{array}{l}
x_{i} \\
1 \\
0
\end{array}\right), Y_{i}=\left(\begin{array}{c}
0 \\
y_{i} \\
1
\end{array}\right) \text { and } Z_{i}=\left(\begin{array}{l}
1 \\
0 \\
z_{i}
\end{array}\right)
$$

$$
[p, q, r, s]=\operatorname{sign}\left|\begin{array}{cccc}
x_{p} & x_{q} & x_{r} & x_{s} \\
y_{p} & y_{q} & y_{r} & y_{s} \\
z_{p} & z_{q} & z_{r} & z_{s} \\
1 & 1 & 1 & 1
\end{array}\right|
$$

Orientation	Determinant	Decomposition
$\left[X_{a}, X_{b}, Y_{c}, Y_{d}\right]$	$\left(x_{a}-x_{b}\right)\left(y_{c}-y_{d}\right)$	$\left(x_{a}-x_{b}\right)\left(y_{c}-y_{d}\right)$
$\left[X_{a}, X_{b}, Z_{c}, Z_{d}\right]$	$\left(x_{a}-x_{b}\right)\left(z_{c}-z_{d}\right)$	$\left(x_{a}-x_{b}\right)\left(z_{c}-z_{d}\right)$
$\left[Y_{a}, Y_{b}, Z_{c}, Z_{d}\right]$	$\left(y_{a}-y_{b}\right)\left(z_{c}-z_{d}\right)$	$\left(y_{a}-y_{b}\right)\left(z_{c}-z_{d}\right)$
$\left[X_{a}, X_{b}, Y_{c}, Z_{d}\right]$	$\left(x_{a}-x_{b}\right)\left(y_{c} z_{d}-z_{d}+1\right)$	$\left(x_{a}-x_{b}\right)\left(y_{c}-1\right)\left(z_{d}-\frac{1}{1-y_{c}}\right)$
$\left[X_{a}, Y_{b}, Y_{c}, Z_{d}\right]$	$\left(y_{b}-y_{c}\right)\left(x_{a}-x_{a} z_{d}-1\right)$	$-\left(y_{b}-y_{c}\right)\left(z_{d}-1\right)\left(x_{a}-\frac{1}{1-z_{d}}\right)$
$\left[X_{a}, Y_{b}, Z_{c}, Z_{d}\right]$	$\left(z_{c}-z_{d}\right)\left(x_{a} y_{b}+1-y_{b}\right)$	$\left(z_{c}-z_{d}\right)\left(x_{a}-1\right)\left(y_{b}-\frac{1}{1-x_{a}}\right)$

FACTORIZING THE $\triangle \triangle$ PREDICATES

$$
X_{i}=\left(\begin{array}{c}
x_{i} \\
1 \\
0
\end{array}\right), Y_{i}=\left(\begin{array}{c}
0 \\
y_{i} \\
1
\end{array}\right) \text { and } Z_{i}=\left(\begin{array}{l}
1 \\
0 \\
z_{i}
\end{array}\right)
$$

$$
[p, q, r, s]=\operatorname{sign}\left|\begin{array}{cccc}
x_{p} & x_{q} & x_{r} & x_{s} \\
y_{p} & y_{q} & y_{r} & y_{s} \\
z_{p} & z_{q} & z_{r} & z_{s} \\
1 & 1 & 1 & 1
\end{array}\right|
$$

Orientation	Determinant	Decomposition
$\left[X_{a}, X_{b}, Y_{c}, Y_{d}\right]$	$\left(x_{a}-x_{b}\right)\left(y_{c}-y_{d}\right)$	$\left(x_{a}-x_{b}\right)\left(y_{c}-y_{d}\right)$
$\left[X_{a}, X_{b}, Z_{c}, Z_{d}\right]$	$\left(x_{a}-x_{b}\right)\left(z_{c}-z_{d}\right)$	$\left(x_{a}-x_{b}\right)\left(z_{c}-z_{d}\right)$
$\left[Y_{a}, Y_{b}, Z_{c}, Z_{d}\right]$	$\left(y_{a}-y_{b}\right)\left(z_{c}-z_{d}\right)$	$\left(y_{a}-y_{b}\right)\left(z_{c}-z_{d}\right)$
$\left[X_{a}, X_{b}, Y_{c}, Z_{d}\right]$	$\left(x_{a}-x_{b}\right)\left(y_{c} z_{d}-z_{d}+1\right)$	$\left(x_{a}-x_{b}\right)\left(y_{c}-1\right)\left(z_{d}-\frac{1}{1-y_{c}}\right)$
$\left[X_{a}, Y_{b}, Y_{c}, Z_{d}\right]$	$\left(y_{b}-y_{c}\right)\left(x_{a}-x_{a} z_{d}-1\right)$	$-\left(y_{b}-y_{c}\right)\left(z_{d}-1\right)\left(x_{a}-\frac{1}{1-z_{d}}\right)$
$\left[X_{a}, Y_{b}, Z_{c}, Z_{d}\right]$	$\left(z_{c}-z_{d}\right)\left(x_{a} y_{b}+1-y_{b}\right)$	$\left(z_{c}-z_{d}\right)\left(x_{a}-1\right)\left(y_{b}-\frac{1}{1-x_{a}}\right)$

$$
f(t) \stackrel{\text { def }}{=} \frac{1}{1-t}
$$

The order on

$\left\{x_{1}, f\left(x_{1}\right), x_{2}, f\left(x_{2}\right), \ldots, z_{n}, f\left(z_{n}\right), \mathbf{1}\right\}$ determines all orientations.

Combinatorial Lifting

$$
\begin{aligned}
& c=\left(x_{1}, x_{2}, \ldots, z_{n}\right) \text { a configuration } \\
& \Lambda(c)=\left(x_{1}, f\left(x_{1}\right), x_{2}, f\left(x_{2}\right), \ldots, z_{n}, f\left(z_{n}\right), 1\right) \\
& x_{i} \leftrightarrow t_{2 i-1}, y_{i} \leftrightarrow t_{2 n+2 i-1}, \ldots \\
& {\left[X_{a}, X_{b}, Y_{c}, Z_{d}\right]=\left(x_{a}-x_{b}\right)\left(y_{c}-1\right)\left(z_{d}-f\left(y_{c}\right)\right)} \\
& \quad \leftrightarrow\left(t_{2 a-1}-t_{2 b-1}\right)\left(t_{2 n+2 c-1}-t_{6 n+1}\right)\left(t_{4 n+2 d-1}-t_{2 n+2 c}\right)
\end{aligned}
$$

Combinatorial lifting

$$
\begin{aligned}
& c=\left(x_{1}, x_{2}, \ldots, z_{n}\right) \text { a configuration } \\
& \Lambda(c)=\left(x_{1}, f\left(x_{1}\right), x_{2}, f\left(x_{2}\right), \ldots, z_{n}, f\left(z_{n}\right), 1\right) \\
& x_{i} \leftrightarrow t_{2 i-1}, y_{i} \leftrightarrow t_{2 n+2 i-1}, \ldots \\
& {\left[X_{a}, X_{b}, Y_{c}, Z_{d}\right]=\left(x_{a}-x_{b}\right)\left(y_{c}-1\right)\left(z_{d}-f\left(y_{c}\right)\right)} \\
& \quad \leftrightarrow\left(t_{2 a-1}-t_{2 b-1}\right)\left(t_{2 n+2 c-1}-t_{6 n+1}\right)\left(t_{4 n+2 d-1}-t_{2 n+2 c}\right)
\end{aligned}
$$

Find an order on ($t_{1}, t_{2}, \ldots, t_{6 n+1}$) that satisfies the symbolic lifting of the boolean formula defining S and is realizable by some $\Lambda(c)$.

$$
\begin{aligned}
& c=\left(x_{1}, x_{2}, \ldots, z_{n}\right) \text { a configuration } \\
& \Lambda(c)=\left(x_{1}, f\left(x_{1}\right), x_{2}, f\left(x_{2}\right), \ldots, z_{n}, f\left(z_{n}\right), 1\right) \\
& x_{i} \leftrightarrow t_{2 i-1}, y_{i} \leftrightarrow t_{2 n+2 i-1}, \ldots \\
& {\left[X_{a}, X_{b}, Y_{c}, Z_{d}\right]=\left(x_{a}-x_{b}\right)\left(y_{c}-1\right)\left(z_{d}-f\left(y_{c}\right)\right)} \\
& \quad \leftrightarrow\left(t_{2 a-1}-t_{2 b-1}\right)\left(t_{2 n+2 c-1}-t_{6 n+1}\right)\left(t_{4 n+2 d-1}-t_{2 n+2 c}\right)
\end{aligned}
$$

Find an order on $\left(t_{1}, t_{2}, \ldots, t_{6 n+1}\right)$ that satisfies the symbolic lifting of the boolean formula defining S and is realizable by some $\Lambda(c)$.

The realizability problem becomes easy if we lift

$$
\text { to }\left(x_{1}, f\left(x_{1}\right), f^{(2)}\left(x_{1}\right), x_{2}, \ldots, f^{(2)}\left(z_{n}\right), 0,1\right)
$$

Combinatorial Lifting

Remember: $f(t) \stackrel{\text { def }}{=} \frac{1}{1-t}$
f has nice properties:

1. $f^{(3)}=f \circ f \circ f=\mathrm{id}$
2. f permutes circularly $(-\infty, 0),(0,1)$ and $(1,+\infty)$
3. f is increasing on each of these intervals

Remember: $f(t) \stackrel{\text { def }}{=} \frac{1}{1-t}$
f has nice properties:

$$
\begin{aligned}
& \text { 1. } f^{(3)}=f \circ f \circ f=\mathrm{id} \\
& \text { 2. } f \text { permutes circularly }(-\infty, 0),(0,1) \text { and }(1,+\infty) \\
& \text { 3. } f \text { is increasing on each of these intervals }
\end{aligned}
$$

Theorem. An order in $S_{3 n+2}$ can be realized by
$\left\{x_{1}, f\left(x_{1}\right), f^{(2)}\left(x_{1}\right), x_{2}, f\left(x_{2}\right), f^{(2)}\left(x_{2}\right)\right.$,
$\left.\ldots, z_{n}, f\left(z_{n}\right), f^{(2)}\left(z_{n}\right), 0,1\right\}$
iff it is compatible with properties 1-2-3.

Remember: $f(t) \stackrel{\text { def }}{=} \frac{1}{1-t}$
f has nice properties:

$$
\begin{aligned}
& \text { 1. } f^{(3)}=f \circ f \circ f=\mathrm{id} \\
& \text { 2. } f \text { permutes circularly }(-\infty, 0),(0,1) \text { and }(1,+\infty) \\
& \text { 3. } f \text { is increasing on each of these intervals }
\end{aligned}
$$

Theorem. An order in $S_{3 n+2}$ can be realized by
$\left\{x_{1}, f\left(x_{1}\right), f^{(2)}\left(x_{1}\right), x_{2}, f\left(x_{2}\right), f^{(2)}\left(x_{2}\right)\right.$,
$\left.\ldots, z_{n}, f\left(z_{n}\right), f^{(2)}\left(z_{n}\right), 0,1\right\}$
iff it is compatible with properties 1-2-3.

Solving the combinatorial problem

Start with $3 n$ geometric variables.

$\left\{x_{i}\right\},\left\{y_{i}\right\},\left\{z_{i}\right\}$, each family ordered by an input permutation

Start with $3 n$ geometric variables.
$\left\{x_{i}\right\},\left\{y_{i}\right\},\left\{z_{i}\right\}$, each family ordered by an input permutation
Add $6 n$ symbolic variables.
$\bullet_{i, j}$ which represents $f^{(j)}\left(\bullet_{i}\right)$, for $j=1,2$ and $\bullet \in\{x, y, z\}$.

Start with $3 n$ geometric variables.
$\left\{x_{i}\right\},\left\{y_{i}\right\},\left\{z_{i}\right\}$, each family ordered by an input permutation
Add $6 n$ symbolic variables.
$\bullet_{i, j}$ which represents $f^{(j)}\left(\bullet_{i}\right)$, for $j=1,2$ and $\bullet \in\{x, y, z\}$.
Insert 0,1 in each ordered family $\left\{x_{i}\right\},\left\{y_{i}\right\},\left\{z_{i}\right\}$.
brute force: $\Theta\left(n^{6}\right)$ cases.

Start with $3 n$ geometric variables.
$\left\{x_{i}\right\},\left\{y_{i}\right\},\left\{z_{i}\right\}$, each family ordered by an input permutation
Add $6 n$ symbolic variables.
$\bullet_{i, j}$ which represents $f^{(j)}\left(\bullet_{i}\right)$, for $j=1,2$ and $\bullet \in\{x, y, z\}$.
Insert 0,1 in each ordered family $\left\{x_{i}\right\},\left\{y_{i}\right\},\left\{z_{i}\right\}$.
brute force: $\Theta\left(n^{6}\right)$ cases.
Order each family $\left\{\boldsymbol{\bullet}_{i, j}\right\}_{i}$ to be compatible with the action of f.

Start with $3 n$ geometric variables.
$\left\{x_{i}\right\},\left\{y_{i}\right\},\left\{z_{i}\right\}$, each family ordered by an input permutation
Add $6 n$ symbolic variables.
$\bullet_{i, j}$ which represents $f^{(j)}\left(\bullet_{i}\right)$, for $j=1,2$ and $\bullet \in\{x, y, z\}$.
Insert 0,1 in each ordered family $\left\{x_{i}\right\},\left\{y_{i}\right\},\left\{z_{i}\right\}$.
brute force: $\Theta\left(n^{6}\right)$ cases.
Order each family $\left\{\boldsymbol{\bullet}_{i, j}\right\}_{i}$ to be compatible with the action of f.

A partial order \mathcal{P}_{0} whose linear extensions contain all solution orders

Start with $3 n$ geometric variables.
$\left\{x_{i}\right\},\left\{y_{i}\right\},\left\{z_{i}\right\}$, each family ordered by an input permutation
Add $6 n$ symbolic variables.
$\bullet_{i, j}$ which represents $f^{(j)}\left(\bullet_{i}\right)$, for $j=1,2$ and $\bullet \in\{x, y, z\}$.
Insert 0,1 in each ordered family $\left\{x_{i}\right\},\left\{y_{i}\right\},\left\{z_{i}\right\}$.
brute force: $\Theta\left(n^{6}\right)$ cases.
Order each family $\left\{\boldsymbol{\bullet}_{i, j}\right\}_{i}$ to be compatible with the action of f.

A partial order \mathcal{P}_{0} whose linear extensions contain all solution orders

We then refine \mathcal{P} into $\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots$ such that for each \mathcal{P}_{i}, all or none linear extension is a solution order.

Refine/split \mathcal{P}_{i} one pair of triangle at a time:

1st stage:

$$
\binom{\left[X_{1}, Y_{1}, Z_{1}, X_{2}\right]}{\left[X_{2}, \cdots, Y_{2}, Z_{2}, Z_{1}\right]}
$$

Refine/split \mathcal{P}_{i} one pair of triangle at a time:

1st stage:

$$
\left(\begin{array}{c}
{\left[X_{1}, Y_{1}, Z_{1}, X_{2}\right]} \\
\ldots \\
{\left[X_{2}, Y_{2}, Z_{2}, Z_{1}\right]}
\end{array}\right)
$$

Does \mathcal{P}_{i} determine all orientations?

Refine/split \mathcal{P}_{i} one pair of triangle at a time:

1st stage:

$$
\left(\begin{array}{c}
{\left[X_{1}, Y_{1}, Z_{1}, X_{2}\right]} \\
\cdots \\
{\left[X_{2}, Y_{2}, Z_{2}, Z_{1}\right]}
\end{array}\right)
$$

Are the triangles yes disjoint?

Does \mathcal{P}_{i} determine all orientations?

Refine/split \mathcal{P}_{i} one pair of triangle at a time:

Discard $\mathcal{P}_{i} \nless$ no

1st stage:

$$
\left(\begin{array}{c}
{\left[X_{1}, Y_{1}, Z_{1}, X_{2}\right]} \\
\ldots \\
{\left[X_{2}, Y_{2}, Z_{2}, Z_{1}\right]}
\end{array}\right)
$$

Does \mathcal{P}_{i} determine all orientations?

Refine/split \mathcal{P}_{i} one pair of triangle at a time:

Go to next pair
no

Are the triangles ${ }^{\text {yes }}$ disjoint?

1st stage:

$$
\left(\begin{array}{c}
{\left[X_{1}, Y_{1}, Z_{1}, X_{2}\right]} \\
\ldots \\
{\left[X_{2}, Y_{2}, Z_{2}, Z_{1}\right]}
\end{array}\right)
$$

Does \mathcal{P}_{i} determine all orientations?

Refine/split \mathcal{P}_{i} one pair of triangle at a time:

Go to next pair of triangles

1st stage:

$$
\left(\begin{array}{c}
{\left[X_{1}, Y_{1}, Z_{1}, X_{2}\right]} \\
\ldots \\
{\left[X_{2}, Y_{2}, Z_{2}, Z_{1}\right]}
\end{array}\right)
$$

Does \mathcal{P}_{i} determine all orientations?

2nd stage: detect intersection (discard \mathcal{P}_{i}) or get one new forced comparison,

Refine/split \mathcal{P}_{i} one pair of triangle at a time:

Go to next pair of triangles

1st stage:

$$
\left(\begin{array}{c}
{\left[X_{1}, Y_{1}, Z_{1}, X_{2}\right]} \\
\ldots \\
{\left[X_{2}, Y_{2}, Z_{2}, Z_{1}\right]}
\end{array}\right)
$$

Does \mathcal{P}_{i} determine all orientations?
no

Pick one undecided comparison and fork $\mathcal{P}_{i} \rightarrow \mathcal{P}_{i+1}+\mathcal{P}_{i+2}$

Refine/split \mathcal{P}_{i} one pair of triangle at a time:

Go to next pair of triangles

1st stage:

$$
\left(\begin{array}{c}
{\left[X_{1}, Y_{1}, Z_{1}, X_{2}\right]} \\
\ldots \\
{\left[X_{2}, Y_{2}, Z_{2}, Z_{1}\right]}
\end{array}\right)
$$

Does \mathcal{P}_{i} determine all orientations?
no

Pick one undecided comparison and fork $\mathcal{P}_{i} \rightarrow \mathcal{P}_{i+1}+\mathcal{P}_{i+2}$

Propagate the comparison to comply with the action of f

Using the implementation

" Insert 0,1 in each ordered family $\left\{x_{i}\right\},\left\{y_{i}\right\},\left\{z_{i}\right\}$ "
has a geometric meaning...

We work with permutations tagged with 0 and 1.

We compute the minimally forbidden triples of tagged permutations of size 2 to 6 .

Size 2: equivalent to a lemma of [Asinowski-Katchalski 2005]
Size 5 and 6: none

To summarize

A "hard nut" in discrete geometry.

Standard reduction to a the emptiness of a semi-algebraic set.

$$
\mathbb{R}^{9 n+2}
$$

$\mathbb{R}^{3 n}$

Unexpected factorization through a function f with nice properties.

Allows to test emptiness combinatorially.

New geometric results

+ reveals some useful structure

