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n disjoint compact convex sets in Rd

oriented line that intersects every set
→ permutation (or ordering) of the sets

What is the maximum number gd(n) of
permutations realizable on n sets in Rd?

g2(n) = 2n− 2 [1992]

gd(n) = O
(
n2d−2

)
[1992]

gd(n) = Ω
(
nd−1

)
[2002]

special cases are understood: balls, fatness, . . .

gd(n) = O
(
n2d−3 log n

)
[2010]
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Experimental results:

Here: which triples of permutations
can be realized simultaneously in R3?

Simplest non-trivial constraints

We design an algorithm deciding this.

Implementation (∼ 600 lines of python)

Theorem. Every triple of permutations on n ≤ 5
elements is geometrically realizable in R3.

Theorem. is impossible.

ABCD

ABCD
BADC



The computational problem



Input: Three orders on {1, 2, . . . , n}

Output: Whether there exists n disjoint compact
convex sets in R3 and three lines
intersecting them in these orders.

Geometric Realisability 3D



From geometry to algebra
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Geometric normalization

Start with 3 lines and n disjoint compact
convex sets realizing 3 given orders.

We can crop the sets to triangles
with vertices on the lines.

We can choose the lines (up to
reversing some permutations).
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We can assume that the lines are
pairwise skew.

Compactness
⇒ we can thicken the sets
⇒ we can perturb the lines

We can crop the sets to triangles
with vertices on the lines.

We can choose the lines (up to
reversing some permutations).



Guigue-Devillers algorithm

p1

q1

r1p2

q2

r2

[p, q, r, s]
def
= sign

∣∣∣∣∣∣∣∣
xp xq xr xs

yp yq yr ys
zp zq zr zs
1 1 1 1
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(1) does the plane of a triangle
separate the vertices of the other?

(2) if not, each triangle meets the
intersection of the two planes.
Do the two segments intersect?

rename p, q, r into a, b, c so that
a is separated from {b, c}
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(1) does the plane of a triangle
separate the vertices of the other?

(2) if not, each triangle meets the
intersection of the two planes.
Do the two segments intersect?

rename p, q, r into a, b, c so that
a is separated from {b, c}

[a1, b1, a2, b2] = +1 or [a1, c1, c2, a2] = +1
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Semi-algebraic formulation

G-D algorithm ↔ polynomial decision tree

Orientation predicates are polynomials in the parameters.

The realizations form a semi-algebraic set S defined
by Θ

(
n2
)

inequations.

Parameterize candidate realizations by R3n

ith triangle = convex hull of

xi
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Testing emptiness of a semi-algebraic set

Semi-algebraic formulation

G-D algorithm ↔ polynomial decision tree

Orientation predicates are polynomials in the parameters.

(number of polynomials×maximum degree)
O(number of variables)

CAD, critical points method, . . .

The realizations form a semi-algebraic set S defined
by Θ

(
n2
)

inequations.

Parameterize candidate realizations by R3n

ith triangle = convex hull of

xi

1
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1
0
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From algebra to combinatorics
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Inspiration: Veronese lifting

A trick to linearize problems on polynomials of degree ≤ k in Rd

(x1, x2, . . . , xd) ∈ Rd

7→ (x1, x2, . . . , xd, x
2
1, x1x2,

x1x3, . . . , x
2
d, x

3
1, . . . , x

k
d) ∈ R(d+k

d )

Theorem. Any d finite measures
in Rd can be simultaneously
bisected by a hyperplane.

M2 ⊂ R6

Theorem. Any
(
d+k
d

)
finite measures

in Rd can be simultaneously bisected
by the zero set of a polynomial of
degree k.



Orientation Determinant Decomposition

[Xa, Xb, Yc, Yd] (xa − xb)(yc − yd) (xa − xb)(yc − yd)
[Xa, Xb, Zc, Zd] (xa − xb)(zc − zd) (xa − xb)(zc − zd)
[Ya, Yb, Zc, Zd] (ya − yb)(zc − zd) (ya − yb)(zc − zd)

[Xa, Xb, Yc, Zd] (xa − xb)(yczd − zd + 1) (xa − xb)(yc − 1)
(
zd − 1

1−yc

)
[Xa, Yb, Yc, Zd] (yb − yc)(xa − xazd − 1) −(yb − yc)(zd − 1)

(
xa − 1

1−zd

)
[Xa, Yb, Zc, Zd] (zc − zd)(xayb + 1− yb) (zc − zd)(xa − 1)

(
yb − 1

1−xa

)

Factorizing the 44 predicates

Xi =

xi
1

0

, Yi =

 0

yi
1

 and Zi =

1

0

zi

 [p, q, r, s] = sign
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f(t)
def
= 1

1−t

The order on
{x1, f(x1), x2, f(x2), . . . , zn, f(zn),1}
determines all orientations.



Combinatorial lifting

R3n

R6n+1

Λ xi ↔ t2i−1, yi ↔ t2n+2i−1, . . .

c = (x1, x2, . . . , zn) a configuration

Λ(c) = (x1, f(x1), x2, f(x2), . . . , zn, f(zn), 1)

[Xa, Xb, Yc, Zd] = (xa − xb)(yc − 1) (zd − f(yc))

↔ (t2a−1 − t2b−1)(t2n+2c−1 − t6n+1)(t4n+2d−1 − t2n+2c)
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Find an order on (t1, t2, . . . , t6n+1) that satisfies the symbolic lifting
of the boolean formula defining S and is realizable by some Λ(c).
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Combinatorial lifting

The realizability problem becomes easy if we lift
to (x1, f(x1), f (2)(x1), x2, . . . , f

(2)(zn), 0, 1)

Find an order on (t1, t2, . . . , t6n+1) that satisfies the symbolic lifting
of the boolean formula defining S and is realizable by some Λ(c).
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1. f (3) = f ◦ f ◦ f = id
2. f permutes circularly (−∞, 0), (0, 1) and (1,+∞)
3. f is increasing on each of these intervals

f has nice properties:
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Combinatorial lifting

Remember: f(t)
def
= 1

1−t

1. f (3) = f ◦ f ◦ f = id
2. f permutes circularly (−∞, 0), (0, 1) and (1,+∞)
3. f is increasing on each of these intervals

f has nice properties:

”the action of f”

Theorem. An order in S3n+2 can be realized by
{x1, f(x1), f (2)(x1), x2, f(x2), f (2)(x2),
. . . , zn, f(zn), f (2)(zn), 0, 1}
iff it is compatible with properties 1-2-3.
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Order each family {•i,j}i to be compatible with the action of f .

Start with 3n geometric variables.
{xi}, {yi}, {zi}, each family ordered by an input permutation

Add 6n symbolic variables.
•i,j which represents f (j)(•i), for j = 1, 2 and • ∈ {x, y, z}.

Insert 0, 1 in each ordered family {xi}, {yi}, {zi}.
brute force: Θ

(
n6
)

cases.

A partial order P0 whose
linear extensions contain

all solution orders

We then refine P into P1,P2, . . . such that for each Pi,
all or none linear extension is a solution order.
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Discard Pi Are the triangles
disjoint?

Refine/split Pi one pair
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Go to next pair
of triangles
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Discard Pi Are the triangles
disjoint?

Refine/split Pi one pair
of triangle at a time:

Go to next pair
of triangles

2nd stage: detect intersection (discard Pi)
or get one new forced comparison,

yes

yesno

?

1st stage:[X1, Y1, Z1, X2]
...

[X2, Y2, Z2, Z1]


Does Pi determine all
orientations?



Discard Pi

Pick one undecided
comparison and fork
Pi → Pi+1 + Pi+2

Are the triangles
disjoint?

Refine/split Pi one pair
of triangle at a time:

Go to next pair
of triangles

2nd stage: detect intersection (discard Pi)
or get one new forced comparison,

yes

yes

no

no

?

1st stage:[X1, Y1, Z1, X2]
...

[X2, Y2, Z2, Z1]


Does Pi determine all
orientations?



Discard Pi

Pick one undecided
comparison and fork
Pi → Pi+1 + Pi+2

Propagate the comparison to
comply with the action of f

Are the triangles
disjoint?

Refine/split Pi one pair
of triangle at a time:

Go to next pair
of triangles

2nd stage: detect intersection (discard Pi)
or get one new forced comparison,

yes

yes

no

no

?

1st stage:[X1, Y1, Z1, X2]
...

[X2, Y2, Z2, Z1]


Does Pi determine all
orientations?



Using the implementation



We work with permutations tagged with 0 and 1.

Size 2: equivalent to a lemma of [Asinowski-Katchalski 2005]

Size 5 and 6: none

We compute the minimally forbidden triples of
tagged permutations of size 2 to 6.

has a geometric meaning...

”Insert 0, 1 in each ordered
family {xi}, {yi}, {zi}”

0

1 0

1

0 1



To summarize



R3n

R9n+2

Allows to test emptiness combinatorially.

Unexpected factorization through
a function f with nice properties.

A ”hard nut” in discrete geometry.

Standard reduction to a the
emptiness of a semi-algebraic set.

0

1 0

1

0 1

New geometric results

+ reveals some useful structure


