Forbidden Patterns in Geometric Permutations by Combinatorial Lifting

Xavier Goaoc, Andreas Holmsen, Cyril Nicaud

oriented line that intersects every set \rightarrow **permutation** (or ordering) of the sets

oriented line that intersects every set \rightarrow **permutation** (or ordering) of the sets

oriented line that intersects every set \rightarrow **permutation** (or ordering) of the sets

What is the **maximum number** $g_d(n)$ of permutations realizable on n sets in \mathbb{R}^d ?

oriented line that intersects every set \rightarrow **permutation** (or ordering) of the sets

What is the **maximum number** $g_d(n)$ of permutations realizable on n sets in \mathbb{R}^d ?

 $g_{2}(n) = 2n - 2 \ [1992]$ $g_{d}(n) = O \left(n^{2d-2}\right) \ [1992]$ $g_{d}(n) = \Omega \left(n^{d-1}\right) \ [2002]$ $g_{d}(n) = O \left(n^{2d-3} \log n\right) \ [2010]$

special cases are understood: balls, fatness, ...

Simplest non-trivial constraints

We design an algorithm deciding this.

Implementation (\sim 600 lines of python)

Simplest non-trivial constraints

We design an algorithm deciding this.

Implementation (\sim 600 lines of python)

Experimental results:

Theorem. Every triple of permutations on $n \leq 5$ elements is geometrically realizable in \mathbb{R}^3 .

Simplest non-trivial constraints

We design an algorithm deciding this.

Implementation (\sim 600 lines of python)

Experimental results:

Theorem. Every triple of permutations on $n \leq 5$ elements is geometrically realizable in \mathbb{R}^3 .

The computational problem

 $GEOMETRIC_REALISABILITY_3D$

Input: Three orders on $\{1, 2, \ldots, n\}$

Output: Whether there exists n disjoint compact convex sets in \mathbb{R}^3 and three lines intersecting them in these orders.

From geometry to algebra

GEOMETRIC NORMALIZATION

Start with 3 lines and n disjoint compact convex sets realizing 3 given orders.

We can assume that the lines are **pairwise skew**.

GEOMETRIC NORMALIZATION

Start with 3 lines and n disjoint compact convex sets realizing 3 given orders.

We can assume that the lines are **pairwise skew**.

Compactness \Rightarrow we can thicken the sets \Rightarrow we can perturb the lines

GEOMETRIC NORMALIZATION

Start with 3 lines and n disjoint compact convex sets realizing 3 given orders.

We can assume that the lines are **pairwise skew**.

Compactness \Rightarrow we can thicken the sets \Rightarrow we can perturb the lines

We can crop the sets to **triangles** with vertices **on the lines**.

We can **choose** the lines (up to reversing some permutations).

$$[p, q, r, s] \stackrel{\text{def}}{=} \operatorname{sign} \begin{vmatrix} x_p & x_q & x_r & x_s \\ y_p & y_q & y_r & y_s \\ z_p & z_q & z_r & z_s \\ 1 & 1 & 1 & 1 \end{vmatrix}$$

(1) does the plane of a triangle separate the vertices of the other?

$[p_1, q_1, r_1, p_2]$	$[p_2, a]$
$[p_1, q_1, r_1, q_2]$	$[p_2, 0]$
$[p_1, q_1, r_1, r_2]$	$[p_2, c_2]$

 $p_2, q_2, r_2, p_1] \ p_2, q_2, r_2, q_1] \ p_2, q_2, r_2, r_1]$

$$[p, q, r, s] \stackrel{\text{def}}{=} \operatorname{sign} \begin{vmatrix} x_p & x_q & x_r & x_s \\ y_p & y_q & y_r & y_s \\ z_p & z_q & z_r & z_s \\ 1 & 1 & 1 & 1 \end{vmatrix}$$

$$[p, q, r, s] \stackrel{\text{def}}{=} \operatorname{sign} \begin{vmatrix} x_p & x_q & x_r & x_s \\ y_p & y_q & y_r & y_s \\ z_p & z_q & z_r & z_s \\ 1 & 1 & 1 & 1 \end{vmatrix}$$

(1) does the plane of a triangle separate the vertices of the other?

$[p_1, q_1, r_1, p_2]$	$[p_2, q_2, r_2, p_1]$
$[p_1, q_1, r_1, q_2]$	$\left[p_{2},q_{2},r_{2},q_{1} ight]$
$[p_1, q_1, r_1, r_2]$	$[p_2, q_2, r_2, r_1]$

(2) if not, each triangle meets the intersection of the two planes.Do the two segments intersect?

rename p, q, r into a, b, c so that a is separated from $\{b, c\}$

$$[a_1, b_1, a_2, b_2] = +1$$
 or $[a_1, c_1, c_2, a_2] = +1$

$$[p, q, r, s] \stackrel{\text{def}}{=} \operatorname{sign} \begin{vmatrix} x_p & x_q & x_r & x_s \\ y_p & y_q & y_r & y_s \\ z_p & z_q & z_r & z_s \\ 1 & 1 & 1 & 1 \end{vmatrix}$$

(1) does the plane of a triangle separate the vertices of the other?

$[p_1, q_1, r_1, p_2]$	$[p_2, q_2, r_2, p_1]$
$[p_1, q_1, r_1, q_2]$	$\left[p_{2},q_{2},r_{2},q_{1} ight]$
$[p_1, q_1, r_1, r_2]$	$[p_2, q_2, r_2, r_1]$

(2) if not, each triangle meets the intersection of the two planes.Do the two segments intersect?

rename p, q, r into a, b, c so that a is separated from $\{b, c\}$

$$[a_1, b_1, a_2, b_2] = +1$$
 or $[a_1, c_1, c_2, a_2] = +1$

SEMI-ALGEBRAIC FORMULATION

Parameterize candidate realizations by
$$\mathbb{R}^{3n}$$

*i*th triangle = convex hull of $\begin{pmatrix} x_i \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ y_i \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 0 \\ z_i \end{pmatrix}$.

G-D algorithm \leftrightarrow polynomial decision tree

Orientation predicates are polynomials in the parameters.

The realizations form a semi-algebraic set S defined by $\Theta\left(n^2\right)$ inequations.

SEMI-ALGEBRAIC FORMULATION

Parameterize candidate realizations by
$$\mathbb{R}^{3n}$$

*i*th triangle = convex hull of $\begin{pmatrix} x_i \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ y_i \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 0 \\ z_i \end{pmatrix}$.

G-D algorithm \leftrightarrow polynomial decision tree

Orientation predicates are polynomials in the parameters.

The realizations form a semi-algebraic set S defined by $\Theta\left(n^{2}\right)$ inequations.

TESTING EMPTINESS OF A SEMI-ALGEBRAIC SET

CAD, critical points method, ...

 $(\text{number of polynomials} \times \text{maximum degree})^{O(\text{number of variables})}$

From algebra to combinatorics

A trick to **linearize** problems on polynomials of degree $\leq k$ in \mathbb{R}^d

$$(x_1, x_2, \dots, x_d) \in \mathbb{R}^d \\ \mapsto \begin{array}{c} (x_1, x_2, \dots, x_d, x_1^2, x_1 x_2, \\ x_1 x_3, \dots, x_d^2, x_1^3, \dots, x_d^k) \end{array} \in \mathbb{R}^{\binom{d+k}{d}}$$

A trick to **linearize** problems on polynomials of degree $\leq k$ in \mathbb{R}^d

$$(x_1, x_2, \dots, x_d) \in \mathbb{R}^d \\ \mapsto \begin{array}{c} (x_1, x_2, \dots, x_d, x_1^2, x_1 x_2, \\ x_1 x_3, \dots, x_d^2, x_1^3, \dots, x_d^k) \end{array} \in \mathbb{R}^{\binom{d+k}{d}}$$

Theorem. Any d finite measures in \mathbb{R}^d can be simultaneously bisected by a hyperplane. A trick to **linearize** problems on polynomials of degree $\leq k$ in \mathbb{R}^d

$$(x_1, x_2, \dots, x_d) \in \mathbb{R}^d \\ \mapsto \begin{array}{c} (x_1, x_2, \dots, x_d, x_1^2, x_1 x_2, \\ x_1 x_3, \dots, x_d^2, x_1^3, \dots, x_d^k) \end{array} \in \mathbb{R}^{\binom{d+k}{d}}$$

 $\mathcal{M}_2 \subset \mathbb{R}^6$

Theorem. Any d finite measures in \mathbb{R}^d can be simultaneously bisected by a hyperplane.

Theorem. Any $\binom{d+k}{d}$ finite measures in \mathbb{R}^d can be simultaneously bisected by the zero set of a polynomial of degree k.

Factorizing the $\bigtriangleup\bigtriangleup$ predicates

Т

Factorizing the $\triangle \triangle$ predicates

1

Orientation	Determinant
$\boxed{[X_a, X_b, Y_c, Y_d]}$	$(x_a - x_b)(y_c - y_d)$
$\left[X_a, X_b, Z_c, Z_d\right]$	$(x_a - x_b)(z_c - z_d)$
$[Y_a, Y_b, Z_c, Z_d]$	$(y_a - y_b)(z_c - z_d)$
$[X_a, X_b, Y_c, Z_d]$	$(x_a - x_b)(y_c z_d - z_d + 1)$
$[X_a, Y_b, Y_c, Z_d]$	$(y_b - y_c)(x_a - x_a z_d - 1)$
$[X_a, Y_b, Z_c, Z_d]$	$(z_c - z_d)(x_a y_b + 1 - y_b)$

Factorizing the $\bigtriangleup\bigtriangleup$ predicates

$$X_{i} = \begin{pmatrix} x_{i} \\ 1 \\ 0 \end{pmatrix}, Y_{i} = \begin{pmatrix} 0 \\ y_{i} \\ 1 \end{pmatrix} \text{ and } Z_{i} = \begin{pmatrix} 1 \\ 0 \\ z_{i} \end{pmatrix} \qquad [p,q,r,s] = \text{sign} \begin{vmatrix} x_{p} & x_{q} & x_{r} & x_{s} \\ y_{p} & y_{q} & y_{r} & y_{s} \\ z_{p} & z_{q} & z_{r} & z_{s} \\ 1 & 1 & 1 & 1 \end{vmatrix}$$

Orientation	Determinant	Decomposition
$\boxed{[X_a, X_b, Y_c, Y_d]}$	$(x_a - x_b)(y_c - y_d)$	$(x_a - x_b)(y_c - y_d)$
$\left[X_a, X_b, Z_c, Z_d\right]$	$(x_a - x_b)(z_c - z_d)$	$(x_a - x_b)(z_c - z_d)$
$\left[Y_a, Y_b, Z_c, Z_d\right]$	$(y_a - y_b)(z_c - z_d)$	$(y_a - y_b)(z_c - z_d)$
$\left[X_a, X_b, Y_c, Z_d\right]$	$(x_a - x_b)(y_c z_d - z_d + 1)$	$(x_a - x_b)(y_c - 1)\left(z_d - \frac{1}{1 - y_c}\right)$
$\left[X_a, Y_b, Y_c, Z_d\right]$	$(y_b - y_c)(x_a - x_a z_d - 1)$	$-(y_b - y_c)(z_d - 1)\left(x_a - \frac{1}{1 - z_d}\right)$
$\left[X_a, Y_b, Z_c, Z_d\right]$	$(z_c - z_d)(x_a y_b + 1 - y_b)$	$(z_c - z_d)(x_a - 1)\left(y_b - \frac{1}{1 - x_a}\right)$

Factorizing the $\bigtriangleup\bigtriangleup$ predicates

$$X_{i} = \begin{pmatrix} x_{i} \\ 1 \\ 0 \end{pmatrix}, Y_{i} = \begin{pmatrix} 0 \\ y_{i} \\ 1 \end{pmatrix} \text{ and } Z_{i} = \begin{pmatrix} 1 \\ 0 \\ z_{i} \end{pmatrix} \qquad [p,q,r,s] = \text{sign} \begin{vmatrix} x_{p} & x_{q} & x_{r} & x_{s} \\ y_{p} & y_{q} & y_{r} & y_{s} \\ z_{p} & z_{q} & z_{r} & z_{s} \\ 1 & 1 & 1 & 1 \end{vmatrix}$$

Orientation	Determinant	Decomposition
$\begin{bmatrix} X_a, X_b, Y_c, Y_d \end{bmatrix}$	$(x_a - x_b)(y_c - y_d)$	$(x_a - x_b)(y_c - y_d)$
$\left[X_a, X_b, Z_c, Z_d\right]$	$(x_a - x_b)(z_c - z_d)$	$(x_a - x_b)(z_c - z_d)$
$\left[Y_a, Y_b, Z_c, Z_d\right]$	$(y_a - y_b)(z_c - z_d)$	$(y_a - y_b)(z_c - z_d)$
$\left[X_a, X_b, Y_c, Z_d\right]$	$(x_a - x_b)(y_c z_d - z_d + 1)$	$\left (x_a - x_b)(y_c - 1)\left(z_d - \frac{1}{1 - y_c}\right) \right $
$\left[X_a, Y_b, Y_c, Z_d\right]$	$\left((y_b - y_c)(x_a - x_a z_d - 1) \right)$	$-(y_b - y_c)(z_d - 1)\left(x_a - \frac{1}{1 - z_d}\right)$
$\left[X_a, Y_b, Z_c, Z_d\right]$	$(z_c - z_d)(x_a y_b + 1 - y_b)$	$\left(z_c - z_d)(x_a - 1)\left(y_b - \frac{1}{1 - x_a}\right)\right)$

 $f(t) \stackrel{\text{\tiny def}}{=} \frac{1}{1-t}$

The order on $\{x_1, f(x_1), x_2, f(x_2), \dots, z_n, f(z_n), \mathbf{1}\}$ determines all orientations.

COMBINATORIAL LIFTING

$$c = (x_1, x_2, \dots, z_n) \text{ a configuration}$$
$$\Lambda(c) = (x_1, f(x_1), x_2, f(x_2), \dots, z_n, f(z_n), 1)$$
$$x_i \leftrightarrow t_{2i-1}, y_i \leftrightarrow t_{2n+2i-1}, \dots$$

$$[X_a, X_b, Y_c, Z_d] = (x_a - x_b)(y_c - 1) (z_d - f(y_c))$$

$$\leftrightarrow (t_{2a-1} - t_{2b-1})(t_{2n+2c-1} - t_{6n+1})(t_{4n+2d-1} - t_{2n+2c})$$

COMBINATORIAL LIFTING

Find an order on $(t_1, t_2, \ldots, t_{6n+1})$ that **satisfies** the symbolic lifting of the boolean formula defining S and is **realizable** by some $\Lambda(c)$.

COMBINATORIAL LIFTING

Find an order on $(t_1, t_2, \ldots, t_{6n+1})$ that **satisfies** the symbolic lifting of the boolean formula defining S and is **realizable** by some $\Lambda(c)$.

The **realizability problem** becomes easy if we lift to $(x_1, f(x_1), f^{(2)}(x_1), x_2, \dots, f^{(2)}(z_n), 0, 1)$ Combinatorial lifting

Remember:
$$f(t) \stackrel{\text{\tiny def}}{=} \frac{1}{1-t}$$

f has nice properties:

1.
$$f^{(3)} = f \circ f \circ f = id$$

- 2. f permutes circularly $(-\infty, 0)$, (0, 1) and $(1, +\infty)$
- 3. f is increasing on each of these intervals

COMBINATORIAL LIFTING

Remember:
$$f(t) \stackrel{\text{\tiny def}}{=} \frac{1}{1-t}$$

f has nice properties:

1.
$$f^{(3)} = f \circ f \circ f = id$$

- 2. f permutes circularly $(-\infty, 0)$, (0, 1) and $(1, +\infty)$
- 3. f is increasing on each of these intervals

Theorem. An order in S_{3n+2} can be realized by $\{x_1, f(x_1), f^{(2)}(x_1), x_2, f(x_2), f^{(2)}(x_2), \dots, z_n, f(z_n), f^{(2)}(z_n), 0, 1\}$ iff it is compatible with properties 1-2-3.

COMBINATORIAL LIFTING

Remember:
$$f(t) \stackrel{\text{\tiny def}}{=} \frac{1}{1-t}$$

f has nice properties:

1.
$$f^{(3)} = f \circ f \circ f = id$$

- 2. f permutes circularly $(-\infty, 0)$, (0, 1) and $(1, +\infty)$
- 3. f is increasing on each of these intervals

Theorem. An order in S_{3n+2} can be realized by $\{x_1, f(x_1), f^{(2)}(x_1), x_2, f(x_2), f^{(2)}(x_2), \dots, z_n, f(z_n), f^{(2)}(z_n), 0, 1\}$ iff it is compatible with properties 1-2-3.

"the action of f"

Solving the combinatorial problem

 $\{x_i\}$, $\{y_i\}$, $\{z_i\}$, each family ordered by an input permutation

 $\{x_i\}$, $\{y_i\}$, $\{z_i\}$, each family ordered by an input permutation

Add 6n symbolic variables.

•_{*i*,*j*} which represents $f^{(j)}(\bullet_i)$, for j = 1, 2 and $\bullet \in \{x, y, z\}$.

 $\{x_i\}$, $\{y_i\}$, $\{z_i\}$, each family ordered by an input permutation

Add 6n symbolic variables.

•_{*i*,*j*} which represents $f^{(j)}(\bullet_i)$, for j = 1, 2 and $\bullet \in \{x, y, z\}$.

Insert 0, 1 in each ordered family $\{x_i\}$, $\{y_i\}$, $\{z_i\}$. brute force: $\Theta(n^6)$ cases.

 $\{x_i\}$, $\{y_i\}$, $\{z_i\}$, each family ordered by an input permutation

Add 6n symbolic variables.

•_{*i*,*j*} which represents $f^{(j)}(\bullet_i)$, for j = 1, 2 and $\bullet \in \{x, y, z\}$.

Insert 0,1 in each ordered family $\{x_i\}$, $\{y_i\}$, $\{z_i\}$. brute force: $\Theta(n^6)$ cases.

Order each family $\{\bullet_{i,j}\}_i$ to be compatible with the action of f.

 $\{x_i\}$, $\{y_i\}$, $\{z_i\}$, each family ordered by an input permutation

Add 6n symbolic variables.

•_{*i*,*j*} which represents $f^{(j)}(\bullet_i)$, for j = 1, 2 and $\bullet \in \{x, y, z\}$.

Insert 0, 1 in each ordered family $\{x_i\}$, $\{y_i\}$, $\{z_i\}$. brute force: $\Theta(n^6)$ cases.

Order each family $\{\bullet_{i,j}\}_i$ to be compatible with the action of f.

A partial order \mathcal{P}_0 whose linear extensions contain all solution orders

 $\{x_i\}$, $\{y_i\}$, $\{z_i\}$, each family ordered by an input permutation

Add 6n symbolic variables.

•_{*i*,*j*} which represents $f^{(j)}(\bullet_i)$, for j = 1, 2 and $\bullet \in \{x, y, z\}$.

Insert 0, 1 in each ordered family $\{x_i\}$, $\{y_i\}$, $\{z_i\}$. brute force: $\Theta(n^6)$ cases.

Order each family $\{\bullet_{i,j}\}_i$ to be compatible with the action of f.

A partial order \mathcal{P}_0 whose linear extensions contain all solution orders

We then refine \mathcal{P} into $\mathcal{P}_1, \mathcal{P}_2, \ldots$ such that for each \mathcal{P}_i , all or none linear extension is a solution order.

Refine/split \mathcal{P}_i one pair of triangle at a time:

1st stage: $\begin{pmatrix} [X_1, Y_1, Z_1, X_2] \\ \dots \\ [X_2, Y_2, Z_2, Z_1] \end{pmatrix}$ Refine/split \mathcal{P}_i one pair of triangle at a time:

1st stage: $\begin{pmatrix} [X_1, Y_1, Z_1, X_2] \\ ... \\ [X_2, Y_2, Z_2, Z_1] \end{pmatrix}$

Does \mathcal{P}_i determine all orientations?

Refine/split \mathcal{P}_i one pair of triangle at a time:

Using the implementation

"Insert 0, 1 in each ordered family $\{x_i\}$, $\{y_i\}$, $\{z_i\}$ "

has a geometric meaning...

We work with permutations **tagged** with 0 and 1.

We compute the **minimally forbidden** triples of tagged permutations of size 2 to 6.

Size 2: equivalent to a lemma of [Asinowski-Katchalski 2005] Size 5 and 6: none

To summarize

A "hard nut" in discrete geometry.

Standard reduction to a the emptiness of a semi-algebraic set.

Allows to test emptiness combinatorially.

New geometric results

 \mathbb{R}^{9n+2}

 \mathbb{R}^{3n}

+ reveals some useful structure

